986 resultados para Chromosomal Mosaicism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular identity and function of the Drosophila melanogaster Y-linked fertility factors have long eluded researchers. Although the D. melanogaster genome sequence was recently completed, the fertility factors still were not identified, in part because of low cloning efficiency of heterochromatic Y sequences. Here we report a method for iterative blast searching to assemble heterochromatic genes from shotgun assemblies, and we successfully identify kl-2 and kl-3 as 1β- and γ-dynein heavy chains, respectively. Our conclusions are supported by formal genetics with X-Y translocation lines. Reverse transcription–PCR was successful in linking together unmapped sequence fragments from the whole-genome shotgun assembly, although some sequences were missing altogether from the shotgun effort and had to be generated de novo. We also found a previously undescribed Y gene, polycystine-related (PRY). The closest paralogs of kl-2, kl-3, and PRY (and also of kl-5) are autosomal and not X-linked, suggesting that the evolution of the Drosophila Y chromosome has been driven by an accumulation of male-related genes arising de novo from the autosomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously generated a transgenic mouse model for acute promyelocytic leukemia (APL) by expressing the promyelocytic leukemia (PML)–retinoic acid receptor (RARα) cDNA in early myeloid cells. This fusion protein causes a myeloproliferative disease in 100% of animals, but only 15–20% of the animals develop acute leukemia after a long latency period (6–13 months). PML-RARα is therefore necessary, but not sufficient, for APL development. The coexpression of a reciprocal form of the fusion, RARα-PML, increased the likelihood of APL development (55–60%), but did not shorten latency. Together, these results suggested that additional genetic events are required for the development of APL. We therefore evaluated the splenic tumor cells from 18 transgenic mice with APL for evidence of secondary genetic events, by using spectral karyotyping analysis. Interstitial or terminal deletions of the distal region of one copy of chromosome 2 [del(2)] were found in 1/5 tumors expressing PML-RARα, but in 11/13 tumors expressing both PML-RARα and RARα-PML (P < 0.05). Leukemic cells that contained a deletion on chromosome 2 often contained additional chromosomal gains (especially of 15), chromosomal losses (especially of 11 or X/Y), or were tetraploid (P ≤ 0.001). These changes did not commonly occur in nontransgenic littermates, nor in aged transgenic mice that did not develop APL. These results suggest that expression of RARα-PML increases the likelihood of chromosome 2 deletions in APL cells. Deletion 2 appears to predispose APL cells to further chromosomal instability, which may lead to the acquisition of additional changes that provide an advantage to the transformed cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mouse has become an increasingly important organism for modeling human diseases and for determining gene function in a mammalian context. Unfortunately, transposon-tagged mutagenesis, one of the most valuable tools for functional genomics, still is not available in this organism. On the other hand, it has long been speculated that members of the Tc1/mariner-like elements may be less dependent on host factors and, hence, can be introduced into heterologous organisms. However, this prediction has not been realized in mice. We report here the chromosomal transposition of the Sleeping Beauty (SB) element in mouse embryonic stem cells, providing evidence that it can be used as an in vivo mutagen in mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bipolar affective disorder (BPAD; manic-depressive illness) is characterized by episodes of mania and/or hypomania interspersed with periods of depression. Compelling evidence supports a significant genetic component in the susceptibility to develop BPAD. To date, however, linkage studies have attempted only to identify chromosomal loci that cause or increase the risk of developing BPAD. To determine whether there could be protective alleles that prevent or reduce the risk of developing BPAD, similar to what is observed in other genetic disorders, we used mental health wellness (absence of any psychiatric disorder) as the phenotype in our genome-wide linkage scan of several large multigeneration Old Order Amish pedigrees exhibiting an extremely high incidence of BPAD. We have found strong evidence for a locus on chromosome 4p at D4S2949 (maximum genehunter-plus nonparametric linkage score = 4.05, P = 5.22 × 10−4; sibpal Pempirical value <3 × 10−5) and suggestive evidence for a locus on chromosome 4q at D4S397 (maximum genehunter-plus nonparametric linkage score = 3.29, P = 2.57 × 10−3; sibpal Pempirical value <1 × 10−3) that are linked to mental health wellness. These findings are consistent with the hypothesis that certain alleles could prevent or modify the clinical manifestations of BPAD and perhaps other related affective disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromosomal replication in Escherichia coli was studied by flow cytometry and was found to be inhibited by an extracellular factor present in conditioned media collected during late exponential and early stationary phase, i.e., via a quorum-sensing mechanism. Our results suggest that the inhibitory activity of the extracellular factor is exerted during initiation of DNA replication rather than during elongation. Furthermore, we present evidence that this interaction may occur directly at each of the replication forks. Unlike other quorum-sensing systems described so far for Gram-negative bacteria, this inhibitory activity does not require transcription or translation to be effective. Implications of quorum-sensing regulation of DNA replication are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somatic mosaicism has been observed previously in the lymphocyte population of patients with Fanconi anemia (FA). To identify the cellular origin of the genotypic reversion, we examined each lymphohematopoietic and stromal cell lineage in an FA patient with a 2815–2816ins19 mutation in FANCA and known lymphocyte somatic mosaicism. DNA extracted from individually plucked peripheral blood T cell colonies and marrow colony-forming unit granulocyte–macrophage and burst-forming unit erythroid cells revealed absence of the maternal FANCA exon 29 mutation in 74.0%, 80.3%, and 86.2% of colonies, respectively. These data, together with the absence of the FANCA exon 29 mutation in Epstein–Barr virus-transformed B cells and its presence in fibroblasts, indicate that genotypic reversion, most likely because of back mutation, originated in a lymphohematopoietic stem cell and not solely in a lymphocyte population. Contrary to a predicted increase in marrow cellularity resulting from reversion in a hematopoietic stem cell, pancytopenia was progressive. Additional evaluations revealed a partial deletion of 11q in 3 of 20 bone marrow metaphase cells. By using interphase fluorescence in situ hybridization with an MLL gene probe mapped to band 11q23 to identify colony-forming unit granulocyte–macrophage and burst-forming unit erythroid cells with the 11q deletion, the abnormal clone was exclusive to colonies with the FANCA exon 29 mutation. Thus, we demonstrate the spontaneous genotypic reversion in a lymphohematopoietic stem cell. The subsequent development of a clonal cytogenetic abnormality in nonrevertant cells suggests that ex vivo correction of hematopoietic stem cells by gene transfer may not be sufficient for providing life-long stable hematopoiesis in patients with FA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Etoposide, a topoisomerase II inhibitor widely used in cancer therapy, is suspected of inducing secondary tumors and affecting the genetic constitution of germ cells. A better understanding of the potential heritable risk of etoposide is needed to provide sound genetic counseling to cancer patients treated with this drug in their reproductive years. We used a mouse model to investigate the effects of clinical doses of etoposide on the induction of chromosomal abnormalities in spermatocytes and their transmission to zygotes by using a combination of chromosome painting and 4′,6-diamidino-2-phenylindole staining. High frequencies of chromosomal aberrations were detected in spermatocytes within 64 h after treatment when over 30% of the metaphases analyzed had structural aberrations (P < 0.01). Significant increases in the percentages of zygotic metaphases with structural aberrations were found only for matings that sampled treated pachytene (28-fold, P < 0.0001) and preleptotene spermatocytes (13-fold, P < 0.001). Etoposide induced mostly acentric fragments and deletions, types of aberrations expected to result in embryonic lethality, because they represent loss of genetic material. Chromosomal exchanges were rare. Etoposide treatment of pachytene cells induced aneuploidy in both spermatocytes (18-fold, P < 0.01) and zygotes (8-fold, P < 0.05). We know of no other report of an agent for which paternal exposure leads to an increased incidence of aneuploidy in the offspring. Thus, we found that therapeutic doses of etoposide affect primarily meiotic germ cells, producing unstable structural aberrations and aneuploidy, effects that are transmitted to the progeny. This finding suggests that individuals who undergo chemotherapy with etoposide may be at a higher risk for abnormal reproductive outcomes especially within the 2 months after chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA polymerase ɛ (Polɛ) is thought to be involved in DNA replication, repair, and cell-cycle checkpoint control in eukaryotic cells. Although the requirement of other replicative DNA polymerases, DNA polymerases α and δ (Polα and δ), for chromosomal DNA replication has been well documented by genetic and biochemical studies, the precise role, if any, of Polɛ in chromosomal DNA replication is still obscure. Here we show, with the use of a cell-free replication system with Xenopus egg extracts, that Xenopus Polɛ is indeed required for chromosomal DNA replication. In Polɛ-depleted extracts, the elongation step of chromosomal DNA replication is markedly impaired, resulting in significant reduction of the overall DNA synthesis as well as accumulation of small replication intermediates. Moreover, despite the decreased DNA synthesis, excess amounts of Polα are loaded onto the chromatin template in Polɛ-depleted extracts, indicative of the failure of proper assembly of DNA synthesis machinery at the fork. These findings strongly suggest that Polɛ, along with Polα and Polδ, is necessary for coordinated chromosomal DNA replication in eukaryotic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neocentromeres (NCs) are fully functional centromeres that arise ectopically in noncentromeric regions lacking α-satellite DNA. Using telomere-associated chromosome truncation, we have produced a series of minichromosomes (MiCs) from a mardel(10) marker chromosome containing a previously characterized human NC. These MiCs range in size from ≈0.7 to 1.8 Mb and contain single-copy intact genomic DNA from the 10q25 region. Two of these NC-based Mi-Cs (NC-MiCs) appear circular whereas one is linear. All demonstrate stability in both structure and mitotic transmission in the absence of drug selection. Presence of a functional NC is shown by binding a host of key centromere-associated proteins. These NC-MiCs provide direct evidence for mitotic segregation function of the NC DNA and represent examples of stable mammalian MiCs lacking centromeric repeats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homologous DNA recombination is a fundamental, regenerative process within living organisms. However, in most organisms, homologous recombination is a rare event, requiring a complex set of reactions and extensive homology. We demonstrate in this paper that Beta protein of phage λ generates recombinants in chromosomal DNA by using synthetic single-stranded DNAs (ssDNA) as short as 30 bases long. This ssDNA recombination can be used to mutagenize or repair the chromosome with efficiencies that generate up to 6% recombinants among treated cells. Mechanistically, it appears that Beta protein, a Rad52-like protein, binds and anneals the ssDNA donor to a complementary single-strand near the DNA replication fork to generate the recombinant. This type of homologous recombination with ssDNA provides new avenues for studying and modifying genomes ranging from bacterial pathogens to eukaryotes. Beta protein and ssDNA may prove generally applicable for repairing DNA in many organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a general method for rigorously identifying correlations between variations in large-scale molecular profiles and outcomes and apply it to chromosomal comparative genomic hybridization data from a set of 52 breast tumors. We identify two loci where copy number abnormalities are correlated with poor survival outcome (gain at 8q24 and loss at 9q13). We also identify a relationship between abnormalities at two loci and the mutational status of p53. Gain at 8q24 and loss at 5q15-5q21 are linked with mutant p53. The 9q and 5q losses suggest the possibility of gene products involved in breast cancer progression. The analytical techniques are general and also are applicable to the analysis of array-based expression data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proceedings of the National Academy of Sciences Colloquium on the roles of homologous recombination in DNA replication are summarized. Current findings in experimental systems ranging from bacteriophages to mammalian cell lines substantiate the idea that homologous recombination is a system supporting DNA replication when either the template DNA is damaged or the replication machinery malfunctions. There are several lines of supporting evidence: (i) DNA replication aggravates preexisting DNA damage, which then blocks subsequent replication; (ii) replication forks abandoned by malfunctioning replisomes become prone to breakage; (iii) mutants with malfunctioning replisomes or with elevated levels of DNA damage depend on homologous recombination; and (iv) homologous recombination primes DNA replication in vivo and can restore replication fork structures in vitro. The mechanisms of recombinational repair in bacteriophage T4, Escherichia coli, and Saccharomyces cerevisiae are compared. In vitro properties of the eukaryotic recombinases suggest a bigger role for single-strand annealing in the eukaryotic recombinational repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somatic mosaicism caused by in vivo reversion of inherited mutations has been described in several human genetic disorders. Back mutations resulting in restoration of wild-type sequences and second-site mutations leading to compensatory changes have been shown in mosaic individuals. In most cases, however, the precise genetic mechanisms underlying the reversion events have remained unclear, except for the few instances where crossing over or gene conversion have been demonstrated. Here, we report a patient affected with Wiskott–Aldrich syndrome (WAS) caused by a 6-bp insertion (ACGAGG) in the WAS protein gene, which abrogates protein expression. Somatic mosaicism was documented in this patient whose majority of T lymphocytes expressed nearly normal levels of WAS protein. These lymphocytes were found to lack the deleterious mutation and showed a selective growth advantage in vivo. Analysis of the sequence surrounding the mutation site showed that the 6-bp insertion followed a tandem repeat of the same six nucleotides. These findings strongly suggest that DNA polymerase slippage was the cause of the original germ-line insertion mutation in this family and that the same mechanism was responsible for its deletion in one of the propositus T cell progenitors, thus leading to reversion mosaicism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the isolation and characterization of CDC45, which encodes a polypeptide of 650 amino acids that is essential for the initiation of chromosomal DNA replication in the budding yeast, Saccharomyces cerevisiae. CDC45 genetically interacts with at least two members of the MCM (minichromosome maintenance) family of replication genes, CDC46 and CDC47, which are proposed to perform a role in restricting initiation of DNA replication to once per cell cycle. Like mutants in several MCM genes, alleles of CDC45 also show a severe minichromosome maintenance defect. Together, these observations imply that Cdc45p performs a role in the control of initiation events at chromosomal replication origins. We investigated this possibility further and present evidence demonstrating that Cdc45p is assembled into complexes with one MCM family member, Cdc46p/Mcm5p. These observations point to a role for Cdc45p in controlling the early steps of chromosomal DNA replication in conjunction with MCM polypeptide complexes. Unlike the MCMs, however, the subcellular localization of Cdc45p does not vary with the cell cycle, making it likely that Cdc45p interacts with MCMs only during the nuclear phase of MCM localization in G1.