952 resultados para Chlorhexidine Gel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente trabalho tem como objetivo determinar a influência das interações das gomas xantana e guar com o amido de milho de alto teor de amilose na textura de gel durante o armazenamento. Foram utilizadas amostras de amido milho Hylon VII® (71% de amilose, National Starch, goma guar (Higum 55I®, Rhodia) e goma xantana (Rhodigel 200®, Rhodia). Foram utilizadas diferentes concentrações das gomas guar e xantana, que variaram de 0 a 1%, de acordo com o delineamento experimental central composto rotacional. Em cada tratamento foram utilizadas 50g de amido com alto teor de amilose (Hylon VII), adicionadas das gomas. Estas amostras foram diluídas em água destilada e submetidas à agitação mecânica até completa dissolução. As soluções foram aquecidas até 95°C por 5 minutos para formação dos géis, os quais foram acondicionados em recipientes plásticos de 50mL e mantidos em temperatura de 5-10°C até 120h. Nos tempos T1 (24h), T2 (48h), T3 (72h), T4 (96h) e T5 (120h) de armazenamento foram feitas medidas da força máxima do gel de amilose em texturômetro (Stable Micro-System, Modelo TAX-T2). No período inicial, de 24 horas, a goma guar não apresentou influência positiva na redução da força do gel, sendo que a aplicação de goma xantana entre 0,7 e 1,0% apresentou os menores valores de força do gel de amilose. Após 120h de armazenamento, a força do gel de amilose diminuiu com a adição de 0,5-1,0% de goma xantana e 0-0,15% de goma guar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho objetivou a otimização da imobilização das enzimas amilases extraídas do malte do milho, usando alginato de sódio. A concentração do malte no extrato, a porcentagem de alginato de sódio e o pH foram usados como fatores que influenciam na imobilização das enzimas. Os resultados mostraram que as melhores condições de imobilização foram obtidas quando se usou as soluções de malte de milho em duas faixas de concentrações, uma entre 3,75 a 5 g.L-1 e outra entre 15 a 16,25 g.L-1, em pH entre 4,83 a 6,6 e 4% (m/v) de alginato de sódio, condições nas quais se conseguiu imobilizar 100% das enzimas com baixa perda de atividade. Este trabalho mostrou como se obter amilases de malte de milho imobilizadas por oclusão em alginato de sódio e que podem ser usadas em processos industriais de hidrólise de amido.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the influence of high hydrostatic pressure (150, 250, 350, 450, and 550 MPa), applied for 5 minutes, on antioxidant capacity, total phenolic content, color, firmness, rehydration ratio, and water holding capacity of aloe vera gel stored for 60 days at 4 °C. The analyzed properties of the pressurized gel showed significant changes after the storage period. The highest value of total phenolic content was found at 550 MPa. However, a decrease in the antioxidant capacity was observed for all pressurized gel samples when compared to the control sample (p < 0.05). The smallest changes in product color were observed at pressure levels between 150 and 250 MP. The application of high hydrostatic pressure resulted in lower gel firmness, and the lowest value was found at 150 MPa (p < 0.05). On the other hand, the untreated sample showed a greater decrease in firmness, indicating that high pressure processing preserves this property. The application of high hydrostatic pressure exhibited modifications in the food matrix, which were evaluated in terms of rehydration ratio and water holding capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dentre os processos que precedem a conservação em longo prazo, a secagem tem papel fundamental, uma vez que o conteúdo de água das sementes afeta diretamente a sua longevidade. Os objetivos desse trabalho foram pesquisar o efeito da umidificação prévia das sementes após ultrassecagem em diferentes teores de água sobre a qualidade fisiológica de sementes de girassol. Sementes com conteúdo inicial de água de 4,7% foram embebidas previamente até conteúdo de água de 10,2%, e submetidas à secagem lenta, conduzida em câmara de secagem, e à secagem rápida, em sílica gel, até conteúdos de água de 7,4; 3,2; 2,9% e 5,3; 3,2; 2,1%, respectivamente. Após a secagem rápida ou lenta, as sementes foram submetidas ou não à umidificação em caixas tipo "gerbox" até o teor de água de 15,8 a 17% e então avaliadas quanto à germinação, peso da matéria seca de raiz, parte aérea e total das plântulas e teste de condutividade elétrica. O delineamento experimental foi o inteiramente casualizado em esquema fatorial 5 (teores de água) x 2 (com e sem umidificação). Quando utilizado a secagem rápida, a germinação das sementes não é prejudicada, e a secagem lenta, até conteúdo de água de 2,9%, proporciona uma redução na germinação das sementes. Sementes de girassol podem ser desidratadas tanto em sílica gel quanto em câmara de secagem até teores de água de 3,2%, sem perda de germinação e vigor. O tratamento de umidificação após secagem propicia um melhor desenvolvimento de raiz e menores valores de condutividade elétrica nas sementes desidratadas em sílica gel e em câmara de secagem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the work reported here, optically clear, ultrathin TEOS derived sol-gel slides which were suitable for studies of tryptophan (Trp) fluorescence from entrapped proteins were prepared by the sol-gel technique and characterized. The monitoring of intrinsic protein fluorescence provided information about the structure and environment of the entrapped protein, and about the kinetics of the interaction between the entrapped protein and extemal reagents. Initial studies concentrated on the single Trp protein monellin which was entrapped into the sol-gel matrices. Two types of sol-gel slides, termed "wet aged", in which the gels were aged in buffer and "dry-aged", in which the gels were aged in air , were studied in order to compare the effect of the sol-gel matrix on the structure of the protein at different aging stages. Fluorescence results suggested that the mobility of solvent inside the slides was substantially reduced. The interaction of the entrapped protein with both neutral and charged species was examined and indicated response times on the order of minutes. In the case of the neutral species the kinetics were diffusion limited in solution, but were best described by a sum of first order rate constants when the reactions occurred in the glass matrix. For charged species, interactions between the analytes and the negatively charged glass matrix caused the reaction kinetics to become complex, with the overall reaction rate depending on both the type of aging and the charge on the analyte. The stability and conformational flexibility of the entrapped monellin were also studied. These studies indicated that the encapsulation of monellin into dry-aged monoliths caused the thermal unfolding transition to broaden and shift upward by 14°C, and causedthe long-term stability to improve by 12-fold (compared to solution). Chemical stability studies also showed a broader transition for the unfolding of the protein in dry-aged monoliths, and suggested that the protein was present in a distribution of environments. Results indicated that the entrapped proteins had a smaller range of conformational motions compared to proteins in solution, and that entrapped proteins were not able to unfold completely. The restriction of conformational motion, along with the increased structural order of the internal environment of the gels, likely resulted in the improvements in themial and long-term stability that were observed. A second protein which was also studied in this work is the metal binding protein rat oncomodulin. Initially, the unfolding behavior of this protein in aqueous solution was examined. Several single tryptophan mutants of the metal-binding protein rat oncomodulin (OM) were examined; F102W, Y57W, Y65W and the engineered protein CDOM33 which had all 12 residues of the CD loop replaced with a higher affinity binding loop. Both the thermal and the chemical stability were improved upon binding of metal ions with the order apo < Ca^^ < Tb^"^. During thermal denaturation, the transition midpoints (Tun) of Y65W appeared to be the lowest, followed by Y57W and F102W. The placement of the Trp residue in the F-helix in F102W apparently made the protein slightly more thermostable, although the fluorescence response was readily affected by chemical denaturants, which probably acted through the disruption of hydrogen bonds at the Cterminal end of the F-helix. Under both thermal and chemical denaturation, the engineered protein showed the highest stability. This indicated that increasing the number of metal ligating oxygens in the binding site, either by using a metal ion with a higher coordinatenumber (i.e. Tb^*) which binds more carboxylate ligands, or by providing more ligating groups, as in the CDOM33 replacement, produces notable improvements in protein stability. Y57W and CE)OM33 OM were chosen for further studies when encapsulated into sol-gel derived matrices. The kinetics of interaction of terbium with the entrapped proteins, the ability of the entrapped protein to binding terbium, as well as thermal stability of these two entrapped protein were compared with different levels of Ca^"*^ present in the matrix and in solution. Results suggested that for both of the proteins, the response time and the ability to bind terbium could be adjusted by adding excess calcium to the matrix before gelation. However, the less stable protein Y57W only retained at most 45% of its binding ability in solution while the more stable protein CDOM33 was able to retain 100% binding ability. Themially induced denaturation also suggested that CDOM33 showed similar stability to the protein in solution while Y57W was destabilized. All these results suggested that "hard" proteins (i.e. very stable) can easily survive the sol-gel encapsulation process, but "soft" proteins with lower thermodynamic stability may not be able to withstand the sol-gel process. However, it is possible to control many parameters in order to successfully entrap biological molecules into the sol-gel matrices with maxunum retention of activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formulations of a general bactericidal agent, chlorhexidine, mixed with a phospholipid at different concentrations are investigated using ^H NMR spectroscopy on a chain-deuterated lipid analog. Lipid-chlorhexidine formulation is known to release the drug into an aqueous medium slowly, maintaining a comparable concentration of the drug for up to four times longer than a direct aqueous solution. The NMR data does not support the proposed liposomal entrapment of chlorhexidine in lipid compartments. Complex thermal history of the lipid-chlorhexidine preparations is investigated in detail. In preparation for a counterpart measurement, using ^H NMR of deuterated chlorhexidine mixed with protonated lipid, the synthesis of a deuterated analog of chlorhexidine is performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The successful development of stable biosensors incorporating entrapped proteins suffers from poor understanding of the properties of the entrapped biomolecules. This thesis reports on the use of fluorescence spectroscopy to investigate the properties of proteins entrapped in sol-gel processed silicate materials. Two different single tryptophan (Trp) proteins were investigated in this thesis, the Ca2 + binding protein cod III parvalbumin (C3P) and the salicylate binding protein human serum albumin (HSA). Furthermore, the reactive single cysteine (Cys) residue within C3P and HSA were labelled with the probes iodoacetoxynitrobenzoxadiazole (C3P) and acrylodan (C3P and HSA) to further examine the structure, stability and function of the free and entrapped proteins. The results show that both C3P and HSA can be successfully entrapped into sol-gelderived matrices with retention of function and conformational flexibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminosilicate catalysts containing supported ZnCl2 and metal fluoride salts have been prepared using a sol-gel based route, tested and characterized. The activities of these ZnCl2 + metal fluoride catalysts, while greater than "Clayzic" (ZnCI2 supported on montmorillonite KIO) are not as good as supported ZnCl2 only supported on aluminosilicate. Alumina supports have also been prepared via a sol-gel route using various chemical additives to generate a mesoporous structure, loaded with ZnCl2 and tested for activity. The activities for these alumina-supported catalysts are also significantly higher than that of "Clayzic", an effective Friedel-Crafts catalyst. Characterizations of these two types of catalysts were done by magic angle spinning (MAS) NMR, diffuse reflectance infrared (DRIFT) spectroscopy and additionally for the alumina nitrogen adsorption studies were done. Supported aluminum trichloride was also investigated as an alternative to the traditional use of aluminum trichloride.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mixture of Chlorhexidine digluconate (CHG) with glycerophospholipid 1,2-dimyristoyl- <^54-glycero-3-phospocholine (DMPC-rf54) was analysed using ^H nuclear magnetic resonance. To analyze powder spectra, the de-Pake-ing technique was used. The method is able to extract simultaneously both the orientation distribution function and the anisotropy distribution function. The spectral moments, average order parameter profiles, and longitudinal and transverse relaxation times were used to explore the structural phase behaviour of various DMPC/CHG mixtures in the temperature range 5-60°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorhexidine is an effective antiseptic used widely in disinfecting products (hand soap), oral products (mouthwash), and is known to have potential applications in the textile industry. Chlorhexidine has been studied extensively through a biological and biochemical lens, showing evidence that it attacks the semipermeable membrane in bacterial cells. Although extremely lethal to bacterial cells, the present understanding of the exact mode of action of chlorhexidine is incomplete. A biophysical approach has been taken to investigate the potential location of chlorhexidine in the lipid bilayer. Deuterium nuclear magnetic resonance was used to characterize the molecular arrangement of mixed phospholipid/drug formulations. Powder spectra were analyzed using the de-Pake-ing technique, a method capable of extracting both the orientation distribution and the anisotropy distribution functions simultaneously. The results from samples of protonated phospholipids mixed with deuterium-labelled chlorhexidine are compared to those from samples of deuterated phospholipids and protonated chlorhexidine to determine its location in the lipid bilayer. A series of neutron scattering experiments were also conducted to study the biophysical interaction of chlorhexidine with a model phospholipid membrane of DMPC, a common saturated lipid found in bacterial cell membranes. The results found the hexamethylene linker to be located at the depth of the glycerol/phosphate region of the lipid bilayer. As drug concentration was increased in samples, a dramatic decrease in bilayer thickness was observed. Differential scanning calorimetry experiments have revealed a depression of the DMPC bilayer gel-to-lamellar phase transition temperature with an increasing drug concentration. The enthalpy of the transition remained the same for all drug concentrations, indicating a strictly drug/headgroup interaction, thus supporting the proposed location of chlorhexidine. In combination, these results lead to the hypothesis that the drug is folded approximately in half on its hexamethylene linker, with the hydrophobic linker at the depth of the glycerol/phosphate region of the lipid bilayer and the hydrophilic chlorophenyl groups located at the lipid headgroup. This arrangement seems to suggest that the drug molecule acts as a wedge to disrupt the bilayer. In vivo, this should make the cell membrane leaky, which is in agreement with a wide range of bacteriological observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias, con especialidad en Química Analítica) U.A.N.L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Especialidad en Ingeniería Cerámica) U.A.N.L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Especialidad en Ingeniería Cerámica) U.A.N.L.