940 resultados para Chemically synthesized
Resumo:
The novel nanoparticles, [Ru(bPY)(3)](2)SiW12O40 center dot 2H(2)O(2) were firstly synthesized and characterized by elemental analysis, IR, and TEM. The nanoparticles were used to fabricate a chemically modified carbon paste electrode (CPE) by dispersing nanoparticles and graphite powder in silicone grease. Thus-prepared CPE shows bifunctional electrocatalytic activities towards the reduction of nitrite and the oxidation of oxalate, and exhibits sensitive electrochemiluminescence (ECL).
Resumo:
Fe-Co/CoFe2O4 nanocomposite and CoFe2O4 nanopowders were prepared by the hydrothermal method. The structure of magnetic powders were characterized by X-ray diffraction diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermal gravity analysis (TGA) and differential thermal analysis (DTA) analysis, X-ray photoelectron spectrometry (XPS), and Fourier transform infrared spectra (FTIR) techniques, while magnetic properties were determined by using a vibrating sample magnetometer (VSM) at room temperature.
Resumo:
High melt strength polypropylene (HMSPP) was synthesized by in situ heat induction reaction, in which pure polypropylene (PP) powders without any additives were used as a basic resin and vinyl trimethoxysilane (VTMS) as a grafting and crosslinking agent. The grafting reaction of VTMS with PP was confirmed by FTIR. The structure and properties of HMSPP were characterized by means of various measurements. The content of grafted silane played a key role on the melt strength and melt flow rate (MFR) of HMSPP. With increasing the content of grafted silane, the melt strength of HMSPP increased, and the MFR reduced. In addition, due to the existence of cross-linking structure, the thermal stability and tensile strength of HMSPP were improved compared with PP.
Resumo:
The synthesis and characterization of novel acid-base polyimide membranes for the use in polymer electrolyte membrane fuel cell is presented in this paper. The sulfonated polyimides (SPIs) bearing basic triphenylamine groups were easily synthesized using 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), sulfonated diamine of 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS), and nonsulfonated diamines of 4,4'-diaminotriphenylamine (DATPA). The effects of the structure of the dianhydride and diamines on the properties of SPI membranes were evaluated through the study of membrane parameters including water sorption, proton conductivity, water stability, dimensional changes, and methanol permeability.
Resumo:
A modified impregnation method was used to prepare highly dispersive carbon-supported PtRu catalyst (PtRu/C). Two modifications to the conventional impregnation method were performed: one was to precipitate the precursors ((NH4)(2)PtCl6 and Ru(OH)(3)) on the carbon support before metal reduction: the other was to add a buffer into the synthetic solution to stabilize the pH. The prepared catalyst showed a much higher activity for methanol electro-oxidation than a catalyst prepared by the conventional impregnation method. even higher than that of current commercially available, state-of-the-art catalysts. The morphology of the prepared catalyst was characterized using TEM and XRD measurements to determine particle sizes, alloying degree, and lattice parameters. Electrochemical methods were also used to ascertain the electrochemical active surface area and the specific activity of the catalyst.
Resumo:
We report a facile method to create the chemically converted graphene oxide/epoxy resin nanocomposites from graphene oxide sheets through two-phase extraction. Great improvements in mechanical properties such as compressive failure strength and toughness have been achieved for the chemically converted graphene oxide/epoxy resin for a 0.0375 wt% loading of chemically converted graphene oxide sheets in epoxy resin by 48.3% and 1185.2%, respectively. In addition, the loading of graphene is also conveniently tunable even to 0.15 wt% just by increasing the volume of the graphene oxide dispersion.
Resumo:
A facile method to obtain polydisperse chemically-converted graphene sheets that are covalently functionalized with ionic liquid was reported-the resulting graphene sheets, without any assistance from polymeric or surfactant stabilizers, can be stably dispersed in water, DMF, and DMSO.
Resumo:
The ferrocene-functionalised thiophene derivatives (TFn) with different length of oxyethylene chains were synthesized and polymerized chemically with iron (III) chloride as an oxidant. The resulting ferrocene-functionalised polythiophenes (PTFn) show good solubility in most solvents, such as chloroform (CHCl3) tetrahydrofuran (THF), acetone, etc. The structure and properties of the PTFn polymers were confirmed by IR, H-1 NMR, AFM and photoluminescence (PL). The polymers PTFn show good redox activity with no attenuation of the electroactivity after multiple potential cycling. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Polydisperse, functionalized, chemically converted graphene (f-CCG) nanosheets, which can be homogeneously distributed into water, ethanol, DMF, DMSO and 3-aminopropyltriethoxysilane (APTS), were obtained via facile covalent functionalization with APTS. The resulting f-CCG nanosheets were characterized by FTIR, XPS, TGA, EDX, AFM, SEM, and TEM. Furthermore, the f-CCG nanosheets as reinforcing components were extended into silica monoliths. Compressive tests revealed that the compressive failure strength and the toughness of f-CCG-reinforced APTS monoliths at 0.1 wt% functionalized, chemically converted graphene sheets compared with the neat APTS monolith were greatly improved by 19.9% and 92%, respectively.
Resumo:
A multinary molecular nanocluster, in which a T3 supertetrahedral [Sn4Ga4Zn2Se20](8-) core was neutralized and covalently terminated by four [(TEPA)Mn](2+) (TEPA = tetraethylenepentamine) metal complexes, was synthesized and characterized. The cluster is assembled into, through hydrogen bonding and van de Waals forces, a superlattice that is chemically stable and free of strong covalent coupling. The four different cations were distributed within the cluster in such a manner that both the local charge balance and global charge compensation by the metal complex could be satisfied.
Resumo:
In this paper, the characterization and application of a chemically reduced graphene oxide modified glassy carbon (CR-GO/GC) electrode, a novel electrode system, for the preparation of electrochemical sensing and biosensing platform are proposed. Different kinds of important inorganic and organic electroactive compounds (i.e., probe molecule (potassium ferricyanide), free bases of DNA (guanine (G), adenine (A), thymine (T), and cytosine (C)), oxidase/dehydrogenase-related molecules (hydrogen peroxide (H2O2/beta-nicotinamide adenine dinucleotide (NADH)), neurotransmitters (dopamine (DA)), and other biological molecules (ascorbic acid (AA), uric acid (UA), and acetaminophen (APAP)) were employed to study their electrochemical responses at the CR-GO/GC electrode, which shows more favorable electron transfer kinetics than graphite modified glassy carbon (graphite/GC) and glassy carbon (GC) electrodes.
Resumo:
Paclitaxel-loaded poly(ethylene glycol)-b-poly(L-lactide (LA)) (PEG-PLA) micelles were prepared by two methods. One is physical encapsulation of paclitaxel in micelles composed of a PEG-PLA block copolymer and the other is based on a PEG-PLA-paclitaxel conjugate, abbreviated as "conjugate micelles" Their physicochemical characteristics, e.g. critical micelle concentration (CMC), morphology, and micelle size distribution were then evaluated by means of fluorescence spectroscopy, scanning electron microscopy (SEM), and dynamic light scattering (DLS). The results show that the CMC of PEG-PLA-paclitaxel and PEG-PLA are 6.31 x 10(4) and 1.78 x 10(-3) g L-1, respectively. Both micelles assume a spherical shape with comparable diameters and have unimodal size distribution. Moreover, in vitro drug delivery behavior was studied by high performance liquid chromatography (HPLC). The antitumor activity of the paclitaxel-loaded micelles against human liver cancer H7402 cells was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method.
Resumo:
The effect of template phase on the structures of as-synthesized silica nanoparticles with fragile DDAB vesicles as templates is reported. It is found that the template phase plays a critical role in the growth process of silica: the unstable DDAB vesicles in liquid-crystalline phase often lead to the formation of mesostructured solid spheres, and the rather stable DDAB vesicles in gel phase lead to the formation of hollow spheres with less mesostructures.
Resumo:
A solution-phase approach to synthesize four kinds of mixed-valence, transition metal compounds nanotube is described. The approach is based on the self-assembly of siloxane sol. The resulted production of mixed-valence, transition metal compounds share a common structural characteristic of tubular geometrical morphology, at least for the ones we studied. The results demonstrate that the synthesis strategy can be a general route for preparation of compound nanotubes. In addition, the size control of nanotubular materials can be easily achieved through varying the ionic strength of solution. Based on the strategy, the diameters of ultrathin Ru-Fe nanotubes can be easily tuned between 100 nm and 800 nm.
Resumo:
New asymmetrical aromatic dichlorophthalimide monomers containing pendant groups (trifluoromethyl or methyl) were conveniently prepared from inexpensive and commercially available compounds. With these monomers, a new class of soluble polyimides with a regioirregular structure within the polymer backbone was obtained by the Ni(0)-catalyzed polymerization method. The structures of the polymers were confirmed by various spectroscopic techniques. The polyimides displayed better solubility and higher thermal stability than the corresponding regular polyimides. In addition, fluorinated polyimides in this study had low dielectric constants ranging from 2.52 to 2.78, low moisture absorptions of less than 0.59%, and low thermal expansion coefficients between 10.6 and 19.7 ppm/degrees C. The oxygen permeability coefficients and permeability selectivity of oxygen to nitrogen of the films were in the ranges of 2.99-4.20 barrer and 5.55-7.50, respectively. We have demonstrated that the synthetic pathway for polyimides provides a successful approach to increasing the solubility and processability of polyimides without sacrificing their thermal stability.