998 resultados para Charge de travail


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charge linearization techniques have been used over the years in advanced compact models for bulk and double-gate MOSFETs in order to approximate the position along the channel as a quadratic function of the surface potential (or inversion charge densities) so that the terminal charges can be expressed as a compact closed-form function of source and drain end surface potentials (or inversion charge densities). In this paper, in case of the independent double-gate MOSFETs, we show that the same technique could be used to model the terminal charges quite accurately only when the 1-D Poisson solution along the channel is fully hyperbolic in nature or the effective gate voltages are same. However, for other bias conditions, it leads to significant error in terminal charge computation. We further demonstrate that the amount of nonlinearity that prevails between the surface potentials along the channel actually dictates if the conventional charge linearization technique could be applied for a particular bias condition or not. Taking into account this nonlinearity, we propose a compact charge model, which is based on a novel piecewise linearization technique and shows excellent agreement with numerical and Technology Computer-Aided Design (TCAD) simulations for all bias conditions and also preserves the source/drain symmetry which is essential for Radio Frequency (RF) circuit design. The model is implemented in a professional circuit simulator through Verilog-A, and simulation examples for different circuits verify good model convergence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the results of magnetization and electron paramagnetic resonance (EPR) studies on nanoparticles (average diameter similar to 30 nm) of Bi0.25Ca0.75MnO3 (BCMO) and compare them with the results on bulk BCMO. The nanoparticles were prepared using the nonaqueous sol-gel technique and characterized by XRD and TEM analysis. Magnetization measurements were carried out with a commercial physical property measurement system (PPMS). While the bulk BCMO exhibits a charge ordering transition at similar to 230 K and an antiferromagnetic (AFM) transition at similar to 130 K, in the nanoparticles, the CO phase is seen to have disappeared and a transition to a ferromagnetic (FM) state is observed at T-c similar to 120 K. However, interestingly, the exchange bias effect observed in other nanomanganite ferromagnets is absent in BCMO nanoparticles. EPR measurements were carried out in the X-band between 8 and 300 K. Lineshape fitting to a Lorentzian with two terms (accounting for both the clockwise and anticlockwise rotations of the microwave field) was employed to obtain the relevant EPR parameters as functions of temperature. The results confirm the occurrence of ferromagnetism in the nanoparticles of BCMO. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4730612]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The charge transport in sulfonated multi-wall carbon nanotube (sMWNT)-Nafion composite is reported. The scanning electron microscope images of the composite, at 1 and 10 wt % of sMWNT, show that the nanotubes are well dispersed in polymer matrix, with conductivity values of 0.005 and 3.2 S/cm, respectively; and the percolation threshold is nearly 0.42 wt. %. The exponent (∼0.25) of the temperature dependence of conductivity in both samples indicates Mott's variable range hopping (VRH) transport. The conductance in 1 wt. % sample increases by three orders of magnitude at high electric-fields, consistent with VRH model. The negative magnetoresistance in 10 wt. % sample is attributed to the forward interference scattering mechanism in VRH transport. The ac conductance in 1 wt. % sample is expressed by σ(ω)∝ωs, and the temperature dependence of s follows the correlated barrier hopping model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a detailed investigation of the erects of piezoelectricity, spontaneous polarization and charge density on the electronic states and the quasi-Fermi level energy in wurtzite-type semiconductor heterojunctions. This has required a full solution to the coupled Schrodinger-Poisson-Navier model, as a generalization of earlier work on the Schrodinger-Poisson problem. Finite-element-based simulations have been performed on a A1N/GaN quantum well by using both one-step calculation as well as the self-consistent iterative scheme. Results have been provided for field distributions corresponding to cases with zero-displacement boundary conditions and also stress-free boundary conditions. It has been further demonstrated by using four case study examples that a complete self-consistent coupling of electromechanical fields is essential to accurately capture the electromechanical fields and electronic wavefunctions. We have demonstrated that electronic energies can change up to approximately 0.5 eV when comparing partial and complete coupling of electromechanical fields. Similarly, wavefunctions are significantly altered when following a self-consistent procedure as opposed to the partial-coupling case usually considered in literature. Hence, a complete self-consistent procedure is necessary when addressing problems requiring more accurate results on optoelectronic properties of low-dimensional nanostructures compared to those obtainable with conventional methodologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we present dual-component charge-transfer interaction (CT) induced organogel formation with bile acid anthracene conjugates as donors and 2,4,7-trinitrofluorenone (TNF) as the acceptor. The use of TNF (1) as a versatile electron acceptor in the formation of gels is demonstrated through the formation of gels with different steroidal groups on the anthracene moiety in a variety of solvents ranging from aromatic hydrocarbons to long chain alcohols. Thermal stability and variable temperature fluorescence experiments were performed on these CT gels. Dynamic rheological experiments conducted on these gels suggest that these are viscoelastic soft materials and with the gel strength can be modulated by varying the donor/acceptor ratios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work the structural and spectral characteristics of acetazolamide have been studied by methods of infrared, Raman spectroscopy and quantum chemistry. Electrostatic potential surface, optimized geometry, harmonic vibrational frequencies, infrared intensities and activities of Raman scattering were calculated by density functional theory (DFT) employing B3LYP with complete relaxation in the potential energy surface using 6-311++G(d,p) basis set. Based on these results, we have discussed the correlation between the vibrational modes and the structure of the dimers of acetazolamide. The calculated vibrational spectra of three dimers of acetazolamide have been compared with observed spectra, and the assignment of observed bands was carried out using potential energy distribution. The observed spectra agree well with the values computed from the OFT. A comparison of observed and calculated vibrational spectra clearly shows the effect of hydrogen bonding. The frequency shifts observed for the different dimers are in accord with the hydrogen bonding in acetazolamide. Natural bond orbital (NBO) analyses reflect the charge transfer interaction in the individual hydrogen bond units and the stability of different dimers of acetazolamide. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The toplogical features of a sporadic trifurcated C-H center dot center dot center dot O interaction region, where an oxygen atom acts as an acceptor of three weak hydrogen bonds, has been investigated by experimental and theoretical charge density analysis of ferulic acid. The interaction energy of the asymmetric molecular dimer formed by the trifurcated C-H center dot center dot center dot O motif, based on the multipolar model, is shown to be greater than the corresponding asymmetric O-H center dot center dot center dot O dimer in this crystal structure. Further, the hydrogen bond energies associated with these interaction motifs have been estimated from the local kinetic and potential energy densities at the bond critical points. The trends suggest that the interaction energy of the trifurcated C-H center dot center dot center dot O region is comparable to that of a single O-H center dot center dot center dot O hydrogen bond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polypyrrole (PPy) has been synthesized electrochemically on platinum substrate by varying synthesis temperature and dopant concentration. The charge transport in PPy has been investigated as a function of temperature for both in-plane and out-of-plane geometry in a wide temperature range of 5K-300 K. The charge transport showed strong anisotropy and various mechanisms were used to explain the transport. The conductivity ratio, sigma(r) = sigma(300 K)/sigma(5 K) is calculated for each sample to quantify the relative disorder. At all the temperatures, the conductivity values for in-plane transport are found to be more for PPy synthesized at lower temperature, while the behavior is found to be different for out-of-plane transport. The carrier density is found to play a crucial role in case of in-plane transport. An effort has been made to correlate charge transport to morphology by analyzing temperature and frequency dependence of conductivity. Charge transport in lateral direction is found to be dominated by hopping whereas tunneling mechanisms are dominated in vertical direction. Parameters such as density of states at the Fermi level N(E-F)], average hopping distance (R), and average hopping energy (W) have been estimated for each samples in both geometry. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4775405]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical control and one cycle control of current are popular methods used to modulate pulses in active rectifiers for ac-dc power conversion. One cycle control has lower control complexity and can be implemented using linear analog circuits when compared with the classical approach. However, it also suffers from problems such as instability and offsets in current that is severe at light load conditions. A control strategy for bidirectional boost rectifiers based on one cycle control of charge is proposed for that overcomes these limitations. The integral of sensed current, which represents charge, is compared with a non-linear carrier, which is modified for ac-dc power conversion. This generates the gating signals for the switching devices. The modifications required for the control law governing one cycle control of charge is derived in the paper. Detailed simulation studies are carried out to compare one cycle control of current with the proposed method for ac-dc power conversion, which are validated on a laboratory hardware prototype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the low temperature electrical and magnetic properties of polypyrrole (PPy)/multiwall carbon nanotube (MWNT) coaxial composite fibrils synthesized by the electro-polymerization method. The iron-filled MWNTs were first grown by chemical vapor deposition of a mixture of liquid phase organic compound and ferrocene by the one step method. Then the PPy/MWNT fibrils were prepared by the electrochemical polymerization process. Electron microscopy studies reveal that PPy coating on the surface of nanotube is quite uniform throughout the length. The temperature dependent electrical resistivity and magnetization measurements were done from room temperature down to 5 and 10 K, respectively. The room temperature resistivity (rho) of PPy/MWNT composite fibril sample is similar to 3.8 Omega m with resistivity ratio R-5 K/R-300 K] of similar to 300, and the analysis of rho(T) in terms of reduced activation energy shows that resistivity lies in the insulating regime below 40 K. The resistivity varies according to three dimensional variable range hopping mechanism at low temperature. The magnetization versus applied field (M-H loop) data up to a field of 20 kOe are presented, displaying ferromagnetic behavior at all temperatures with enhanced coercivities similar to 680 and 1870 Oe at room temperature and 10 K, respectively. The observation of enhanced coercivity is due to significant dipolar interaction among encapsulated iron nanoparticles, and their shape anisotropy contribution as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The layered double hydroxides (LDH) or anionic clays are an important class of ion-exchange materials. They consist of positively charged brucite-like inorganic sheets with charge-compensating exchangeable anions in the interlamellar space. Here we show how neutral TCNQ (7,7,8,8-tetracyanoquinodimethane) molecules can be included within the galleries of an LDH. To do so, we exploit the fact that TCNQ is a good electron acceptor that forms donor acceptor complexes with a variety of donors. The electron donor aniline was intercalated into a Mg-Al LDH as p-aminobenzoate (AB) ions by a conventional ion-exchange reaction. We show here that neutral TCNQ molecules may be driven into the galleries of the layered solid by charge-transfer complex formation with the intercalated p-aminobenzoate anions. We use diffraction and spectroscopic measurements in combination with molecular dynamics simulations and quantum chemical calculations to establish the nature of interactions and arrangement of the charge-transfer complex within the galleries of the layered double hydroxide. Electrostatic interactions between the TCNQ molecules and the anchored AB ions, subsequent to charge transfer, are the driving force for the inclusion of TCNQ molecules in the galleries of the LDH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the unique quasi-linear relationship between the surface potentials along the channel, recently we have proposed a quasi-static terminal charge model for common double-gate MOSFETs, which might have asymmetric gate oxide thickness. In this brief, we extend this concept to develop the nonquasi-static (NQS) charge model for the same by solving the governing continuity equations. The proposed NQS model shows good agreement against TCAD simulations and appears to be useful for efficient circuit simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enigmatic type II C-F center dot center dot center dot F-C and C-F center dot center dot center dot S-C interactions in pentafluorophenyl 2,2'-bithiazole are shown to be realistic ``r-hole'' interactions based on high resolution X-ray charge density analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several concepts have been developed in the recent years for nanomaterial based integrated MEMS platform in order to accelerate the process of biological sample preparation followed by selective screening and identification of target molecules. In this context, there exist several challenges which need to be addressed in the process of electrical lysis of biological cells. These are due to (i) low resource settings while achieving maximal lysis (ii) high throughput of target molecules to be detected (iii) automated extraction and purification of relevant molecules such as DNA and protein from extremely small volume of sample (iv) requirement of fast, accurate and yet scalable methods (v) multifunctionality toward process monitoring and (vi) downward compatibility with already existing diagnostic protocols. This paper reports on the optimization of electrical lysis process based on various different nanocomposite coated electrodes placed in a microfluidic channel. The nanocomposites are synthesized using different nanomaterials like Zinc nanorod dispersion in polymer. The efficiency of electrical lysis with various different electrode coatings has been experimentally verified in terms of DNA concentration, amplification and protein yield. The influence of the coating thickness on the injection current densities has been analyzed. We further correlate experimentally the current density vs. voltage relationship with the extent of bacterial cell lysis. A coupled multiphysics based simulation model is used to predict the cell trajectories and lysis efficiencies under various electrode boundary conditions as estimated from experimental results. Detailed in-situ fluorescence imaging and spectroscopy studies are performed to validate various hypotheses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present temperature dependent I-V measurements of short channel MoS2 field effect devices at high source-drain bias. We find that, although the I-V characteristics are ohmic at low bias, the conduction becomes space charge limited at high V-DS, and existence of an exponential distribution of trap states was observed. The temperature independent critical drain-source voltage (V-c) was also determined. The density of trap states was quantitatively calculated from V-c. The possible origin of exponential trap distribution in these devices is also discussed. (C) 2013 AIP Publishing LLC.