979 resultados para Celle in silicio cristallino, Riflettanza, Testurizzazione, Light trapping
Resumo:
The chicken pineal gland contains the autonomous circadian oscillator together with the photic-input pathway. We searched for chicken pineal genes that are induced by light in a time-of-day-dependent manner, and isolated chicken homolog of bZIP transcription factor E4bp4 (cE4bp4) showing high similarity to vrille, one of the Drosophila clock genes. cE4bp4 was expressed rhythmically in the pineal gland with a peak at very early (subjective) night under both 12-h light/12-h dark cycle and constant dark conditions, and the phase was nearly opposite to the expression rhythm of cPer2, a chicken pineal clock gene. Luciferase reporter gene assays showed that cE4BP4 represses cPer2 promoter through a E4BP4-recognition sequence present in the 5′-flanking region, indicating that cE4BP4 can down-regulate the chick pineal cPer2 expression. In vivo light-perturbation studies showed that the prolongation of the light period to early subjective night maintained the high level expression of the pineal cE4bp4, and presumably as a consequence delayed the onset of the induction of the pineal cPer2 expression in the next morning. These light-dependent changes in the mRNA levels of the pineal cE4bp4 and cPer2 were followed by a phase-delay of the subsequent cycles of cE4bp4/cPer2 expression, suggesting that cE4BP4 plays an important role in the phase-delaying process as a light-dependent suppressor of cPer2 gene.
Resumo:
In early seedling development, far-red-light-induced deetiolation is mediated primarily by phytochrome A (phyA), whereas red-light-induced deetiolation is mediated primarily by phytochrome B (phyB). To map the molecular determinants responsible for this photosensory specificity, we tested the activities of two reciprocal phyA/phyB chimeras in diagnostic light regimes using overexpression in transgenic Arabidopsis. Although previous data have shown that the NH2-terminal halves of phyA and phyB each separately lack normal activity, fusion of the NH2-terminal half of phyA to the COOH-terminal half of phyB (phyAB) and the reciprocal fusion (phyBA) resulted in biologically active phytochromes. The behavior of these two chimeras in red and far-red light indicates: (i) that the NH2-terminal halves of phyA and phyB determine their respective photosensory specificities; (ii) that the COOH-terminal halves of the two photoreceptors are necessary for regulatory activity but are reciprocally inter-changeable and thus carry functionally equivalent determinants; and (iii) that the NH2-terminal halves of phyA and phyB carry determinants that direct the differential light lability of the two molecules. The present findings suggest that the contrasting photosensory information gathered by phyA and phyB through their NH2-terminal halves may be transduced to downstream signaling components through a common biochemical mechanism involving the regulatory activity of the COOH-terminal domains of the photoreceptors.
Resumo:
Levels of mRNA for the chloroplast-encoded elongation factor Tu (tufA) showed a dramatic daily oscillation in the green alga Chlamydomonas reinhardtii, peaking once each day in the early light period. The oscillation of tufA mRNA levels continued in cells shifted to continuous light or continuous dark for at least 2-3 days. Run-off transcription analyses showed that the rate of tufA transcription also peaked early in the light period and, moreover, that this transcriptional oscillation continued in cells shifted to continuous conditions. The half-life of tufA mRNA was estimated at different times and found to vary considerably during a light-dark cycle but not in cells shifted to continuous light. Light-dark patterns of transcription of several other chloroplast-encoded genes were examined and also found to persist in cells shifted to continuous light or dark. These results indicate that a circadian clock controls the transcription of tufA and other chloroplast-encoded genes.
Resumo:
We have developed a system for the isolation of Neurospora crassa mutants that shows altered responses to blue light. To this end we have used the light-regulated promoter of the albino-3 gene fused to the neutral amino acid permease gene mtr. The product of the mtr gene is required for the uptake of neutral aliphatic and aromatic amino acids, as well as toxic analogs such as p-flurophenylalanine or 4-methyltryptophan. mtr trp-2-carrying cells were transformed with the al-3 promoter-mtr wild-type gene (al-3p-mtr+) to obtain a strain with a light-regulated tryptophan uptake. This strain is sensitive to p-fluorophenylalanine when grown under illumination and resistant when grown in the dark. UV mutagenesis of the al-3p-mtr(+)-carrying strain allowed us to isolate two mutant strains, BLR-1 and BLR-2 (blue light regulator), that are light-resistant to p-fluorophenylalanine and have lost the ability to grow on tryptophan. These two strains have a pale-orange phenotype and show down-regulation of all the photoregulated genes tested (al-3, al-1, con-8, and con-10). Mutations in the BLR strains are not allelic with white collar 1 or white collar 2, regulatory genes that are also involved in the response to blue light.
Resumo:
Flowering plants require light for chlorophyll synthesis. Early studies indicated that the dependence on light for greening stemmed in part from the light-dependent reduction of the chlorophyll intermediate protochlorophyllide to the product chlorophyllide. Light-dependent reduction of protochlorophyllide by flowering plants is contrasted by the ability of nonflowering plants, algae, and photosynthetic bacteria to reduce protochlorophyllide and, hence, synthesize (bacterio) chlorophyll in the dark. In this report, we functionally complemented a light-independent protochlorophyllide reductase mutant of the eubacterium Rhodobacter capsulatus with an expression library composed of genomic DNA from the cyanobacterium Synechocystis sp. PCC 6803. The complemented R. capsulatus strain is capable of synthesizing bacteriochlorophyll in the light, thereby indicating that a chlorophyll biosynthesis enzyme can function in the bacteriochlorophyll biosynthetic pathway. However, under dark growth conditions the complemented R. capsulatus strain fails to synthesize bacteriochlorophyll and instead accumulates protochlorophyllide. Sequence analysis demonstrates that the complementing Synechocystis genomic DNA fragment exhibits a high degree of sequence identity (53-56%) with light-dependent protochlorophyllide reductase enzymes found in plants. The observation that a plant-type, light-dependent protochlorophyllide reductase enzyme exists in a cyanobacterium indicates that light-dependent protochlorophyllide reductase evolved before the advent of eukaryotic photosynthesis. As such, this enzyme did not arise to fulfill a function necessitated either by the endosymbiotic evolution of the chloroplast or by multicellularity; rather, it evolved to fulfill a fundamentally cell-autonomous role.
Resumo:
Guanylate cyclase activating proteins are EF-hand containing proteins that confer calcium sensitivity to retinal guanylate cyclase at the outer segment discs of photoreceptor cells. By making the rate of cGMP synthesis dependent on the free intracellular calcium levels set by illumination, GCAPs play a fundamental role in the recovery of the light response and light adaptation. The main isoforms GCAP1 and GCAP2 also localize to the synaptic terminal, where their function is not known. Based on the reported interaction of GCAP2 with Ribeye, the major component of synaptic ribbons, it was proposed that GCAP2 could mediate the synaptic ribbon dynamic changes that happen in response to light. We here present a thorough ultrastructural analysis of rod synaptic terminals in loss-of-function (GCAP1/GCAP2 double knockout) and gain-of-function (transgenic overexpression) mouse models of GCAP2. Rod synaptic ribbons in GCAPs−/− mice did not differ from wildtype ribbons when mice were raised in constant darkness, indicating that GCAPs are not required for ribbon early assembly or maturation. Transgenic overexpression of GCAP2 in rods led to a shortening of synaptic ribbons, and to a higher than normal percentage of club-shaped and spherical ribbon morphologies. Restoration of GCAP2 expression in the GCAPs−/− background (GCAP2 expression in the absence of endogenous GCAP1) had the striking result of shortening ribbon length to a much higher degree than overexpression of GCAP2 in the wildtype background, as well as reducing the thickness of the outer plexiform layer without affecting the number of rod photoreceptor cells. These results indicate that preservation of the GCAP1 to GCAP2 relative levels is relevant for maintaining the integrity of the synaptic terminal. Our demonstration of GCAP2 immunolocalization at synaptic ribbons at the ultrastructural level would support a role of GCAPs at mediating the effect of light on morphological remodeling changes of synaptic ribbons.
Resumo:
In order to investigate production pathways of methyl iodide and controls on emissions from the surface ocean, a set of repeated in-vitro incubation experiments were performed over an annual cycle in the context of a time-series of in-situ measurements in Kiel Fjord (54.3 N, 10.1E). The incubation experiments revealed a diurnal variation of methyl iodide in samples exposed to natural light, with maxima during day time and losses during night hours. The amplitude of the daily accumulation varied seasonally and was not affected by filtration (0.2µm), consistent with a photochemical pathway for CH3I production. The methyl iodide loss rate during night time correlated with the concentration accumulated during daytime. Daily (24 hour) net production (Pnet) was similar in magnitude between in vitro and in situ mass balances. However, the estimated gross production (Pgross) of methyl iodide ranged from -0.07 to 2.24 pmol/day and were 5 times higher in summer than Pnet calculated from the in-situ study [Shi et al., 2014]. The large excess of Pgross over Pnet revealed by the in-vitro (incubation) experiments in summer is a consequence of large losses of CH3I by as-yet uncharacterized processes (e.g. biological degradation or chemical pathways other than Cl- substitution).
Resumo:
continued: ... XII. Historical documents and remarks (from December, 1799 to March, 1801) ; Trial of Cooper ; Emigration Society ; Washington's death ; Proceedings in Congress during the session which began December, 1799 ; Board of Commissioners ; Defence of the Quakers of Pennsylvania ; Farewell advertisement ; Prison eclogue ; Republican morality ; Jefferson's election ; Adam's public conduct ; Jefferson's character ; Convention concluded between America and France, in 1800 ; Proceedings in Congress during the session which ended in March, 1801 ; Index.
Resumo:
The SOX family of transcription factors are found throughout the animal kingdom and are important in a variety of developmental contexts. Genome analysis has identified 20 Sox genes in human and mouse, which can be subdivided into 8 groups, based on sequence comparison and intron-exon structure. Most of the SOX groups identified in mammals are represented by a single SOX sequence in invertebrate model organisms, suggesting a duplication and divergence mechanism has operated during vertebrate evolution. We have now analysed the Sox gene complement in the pufferfish, Fugu rubripes, in order to shed further light on the diversity and origins of the Sox gene family. Major differences were found between the Sox family in Fugu and those in humans and mice. In particular, Fugu does not have orthologues of Sry, Sox,15 and Sox30, which appear to be specific to mammals, while Sox19, found in Fugu and zebrafish but absent in mammals, seems to be specific to fishes. Six mammalian Sox genes are represented by two copies each in Fugu, indicating a large-scale gene duplication in the fish lineage. These findings point to recent Sox gene loss, duplication and divergence occurring during the evolution of tetrapod and teleost lineages, and provide further evidence for large-scale segmental or a whole-genome duplication occurring early in the radiation of teleosts. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
With the accelerating industrialization process, even further increasing population and mass deforestation, ‘sustainability’ as a concept has only recently been popularized in Bangladesh. This paper sheds light on the sustainable development process in Bangladesh. It points out the major challenges to this process and identifies the motivating factors for a sustainable society in Bangladesh. The paper concludes with some strategies that are considered essential for the development of a sustainable society in Bangladesh, e.g., strong and effective regulatory framework, emphasis on rural entrepreneurship, development of indigenous technology and an integrated environmental management system.
Resumo:
Intraocular light scatter is high in certain subject groups eg the elderly, due to increased optical media turbidity, which scatters and attenuates light travelling towards the retina. This causes reduced retinal contrast especially in the presence of glare light. Such subjects have depressed Contrast Sensitivity Functions (CSF). Currently available clinical tests do not effectively reflect this visual disability. Intraocular light scatter may be quantified by measuring the CSF with and without glare light and calculating Light Scatter Factors (LSF). To record the CSF on clinically available equipment (Nicolet CS2000), several psychophysical measurement techniques were investigated, and the 60 sec Method of Increasing Contrast was selected as the most appropriate. It was hypothesised that intraocular light scatter due to particles of different dimensions could be identified by glare sources at wide (30°) and narrow (3.5°) angles. CSFs andLSFs were determined for: (i) Subjects in young, intermediate and old age groups. (ii) Subjects during recovery from large amounts of induced corneal oedema. (iii) A clinical sample of contact lens (CL) wearers with a group of matched controls. The CSF was attenuated at all measured spatial frequencies with the intermediate and old group compared to the young group. High LSF values were found only in the old group (over 60 years). It was concluded that CSF attenuation in the intermediate group was due to reduced pupil size, media absorption and/or neural factors. In the old group, the additional factor was high intraocular light scatter levels of lenticular origin. The rate of reduction of the LSF for the 3.5° glare angle was steeper than that for the 30° angle, following induced corneal oedema. This supported the hypothesis, as it was anticipated that epithelial oedema would recover more rapidly than stromal oedema. CSFs and LSFs were markedly abnormal in the CL wearers. The analytical details and the value of these investigative techniques in contact lens research are discussed.
Resumo:
Two zinc-based alloys of high aluminium content, Super Cosmal alloy containing 60% Al, 6% Si, 1% Cu, 0.3% Mn and HAZCA alloy containing 60% Al, 8% Si, 2% Cu, 0.06% Mg were produced by sand casting. Foundry characteristics in particular, fluidity, mode of solidification and feeding ability were examined. Metallographic analysis of structures was carried out using optical and scanning electron microscopy and their mechanical properties were determined using standard techniques. Dry wear characteristics were determined using a pin-on-disc test, and boundary-lubricated wear was studied using full bearing tests. Results from casting experiments were evaluated and compared with the behaviour of a standard ZA-27 alloy and those from tribological tests with both ZA-27 alloy and a leaded tin-bronze (SAE660) under the same testing conditions. The presence of silicon was beneficial, reducing the temperature range of solidification, improving feeding efficiency and reducing gravity segregation of phases. Use of chills and melt degassing was found necessary to achieve soundness and enhanced mechanical properties. Dry wear tests were performed against a steel counterface for sliding speeds of 0.25, 0.5, 1.0 and 2 m/s and for a range of loads up to 15 kgf. The high aluminium alloys showed wear rates as low as those of ZA-27 at speeds of 0.25 and 0.5 m/s for the whole range of applied loads. ZA-27 performed better at higher speeds. The build up of a surface film on the wearing surface of the test pins was found to be responsible for the mild type of wear of the zinc based alloys. The constitution of the surface film was determined as a complex mixture of aluminium, zinc and iron oxides and metallic elements derived from both sliding materials. For full bearing tests, bushes were machined from sand cast bars and were tested against a steel shaft in the presence of a light spindle oil as the lubricant. Results showed that all zinc based alloys run-in more rapidly than bronze, and that wear in Super Cosmal and HAZCA alloys after prolonged running were similar to those in ZA-27 bearings and significantly smaller than those of the bronze.
Resumo:
In the editorial of this special issue we argue that knowledge flows, learning and development are becoming increasingly important in all organisations operating in an international context. The possession of capabilities relating to acquisition, configuration and transfer of relevant knowledge effectively within and across different organisational units, teams, and countries is integrally related to superior organisational performance. In mastering such capabilities, internationalised organisations need to grapple with the inherent challenges relating to contextual variation and different work modes between subsidiaries, partners or team members. The papers in this special issue cast light on crucial aspects of knowledge flows, learning and development in internationalised organisations. Their contribution varies from the provision of frameworks to systematise investigation of these issues, to empirical evidence about effective mechanisms, as well as enabling and constraining forces, in facilitating knowledge transfer, learning and human capital development. © 2012 Inderscience Enterprises Ltd.
Resumo:
Epidemiological studies have suggested that hormone replacement therapy (HRT) offers protection from atherosclerosis, a precursor of cardiovascular disease (CVD), in postmenopausal women. There is good evidence that oxidation of low-density lipoprotein (LDL) by leucocyte-derived reactive oxygen species plays a key role in development of an atherosclerotic plaque. Therefore we have investigated whether the possible protection against CVD by HRT could be due to immunomodulation, specifically of free radical production. The study involves 2 approaches: I) analysing the production of free radicals by leucocytes from women on HRT, 2) investigating the effect of I7p-oestradiol and progesterone on cultured myeloid cells (HL60 and U937). Free radical production by leucocytes was determined using a recently developed bioluminescent assay. In the assay, Pholasin® emits light in the presence of free radicals produced by the NADPH oxidase system of leucocytes stimulated with PMA or fMLP. Cell viability was also investigated using a bioluminescent assay (Cell Titer-Glo®) in which cytosolic ATP levels were measured by the production of luminescence in the presence of Luciferin/Luciferase reagent. Studies of leucocytes from HRT patients showed considerable variation in free radical production, which appeared to be dependent on HRT regime. Studies on the cultured cells showed that there was no cell proliferation at low hormone concentrations, while high concentrations caused cytotoxicity. The effect of hormones on free radical production in this in vitro model system is currently being investigated. The results show that the effects of the hormones on cells of the immune system are very dose dependent, and that both beneficial and adverse effects may occur. In conclusion, luminescent techniques offer a valuable and sensitive approach to studying inflammatory and oxidative processes both in vivo and in vitro.
Resumo:
Nonlinearity plays a critical role in the intra-cavity dynamics of high-pulse energy fiber lasers. Management of the intra-cavity nonlinear dynamics is the key to increase the output pulse energy in such laser systems. Here, we examine the impact of the order of the intra-cavity elements on the energy of generated pulses in the all-normal dispersion mode-locked ring fiber laser cavity. In mathematical terms, the nonlinear light dynamics in resonator makes operators corresponding to the action of laser elements (active and passive fiber, out-coupler, saturable absorber) non-commuting and the order of their appearance in a cavity important. For the simple design of all-normal dispersion ring fiber laser with varying cavity length, we found the order of the cavity elements, leading to maximum output pulse energy.