913 resultados para Cedar Hollow Lime Company.
Resumo:
Cellulose hollow fiber membranes (CHFM) were prepared using a spinning solution containing N-methylmorpholine-N-oxide as solvent and water as a nonsolvent additive. Water was also used as both the internal and external coagulant. It was demonstrated that the phase separation mechanism of this system was delayed demixing. The CHFM was revealed to be homogeneously dense structure after desiccation. The gas permeation properties of CO2, N-2, CH4, and H-2 through CHFM were investigated as a function of membrane water content and operation pressure. The water content of CHFM had crucial influence on gas permeation performance, and the permeation rates of all gases increased sharply with the increase of membrane water content. The permeation rate of CO2 increased with the increase of operation pressure, which has no significant effect on N-2, H-2, and CH4. At the end of this article a detailed comparison of gas permeation performance and mechanism between the CHFM and cellulose acetate flat membrane was given. (C) 2003 Wiley Periodicals, Inc.
Resumo:
The mono- and bimetallic catalytic polymeric hollow-fiber reactors were established with catalytic polymeric cellulose acetate (CA) hollow fibers prepared by supporting the polymer-anchored mono- or bimetallic catalyst in/on the inner wall of the hollow fibers. The selective hydrogenation of cyclopentadiene to cyclopentene was efficiently carried out in the above catalytic polymeric hollow-fiber reactors, especially in the NaBH4 reduced bimetallic PVP-Pd-0.5Co/CA hollow-fiber reactor under mild conditions of 40 degrees C and 0.1 MPa. It was found that there was a remarkable synergic effect of palladium and cobalt reduced by NaBH4 in the bimetallic PVP-Pd-0.5Co/CA hollow-fiber reactor, which results in a 97.5% conversion of cyclopentadiene and a 98.4% selectivity for cyclopentene. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
8YSZ fibers were synthesized by calcination of PVP/zirconium oxychloride/yttrium nitrate composite fibers (PVP-Precursor) obtained by electrospinning. Scanning electron microscopy (SEM) indicated that the 8YSZ fibers are hollow and the gas released during organic binder decomposition resulted in the formation of hollow center in fibers
Resumo:
In this work, rapid and controllable confinement of one-dimensional (1D) hollow PtCo nanomaterials on an indium tin oxide (ITO) electrode surface was simply realized via magnetic attraction. The successful assembly was verified by scanning electron microscopy (SEM) and cyclic voltammetry, which showed that a longer exposure time of the electrode to the suspension of these 1D hollow nanomaterials (magnetic suspension) led to a larger amount of attached 1D hollow PtCo nanomaterials.
Resumo:
We have reported a facile and general method for the rapid synthesis of hollow nanostructures with urchinlike morphology. In-situ produced Ag nanoparticles can be used as sacrificial templates to rapidly synthesize diverse hollow urchinlike metallic or bimetallic (such as Au/Pt) nanostructures. It has been found that heating the solution at 100 degrees C during the galvanic replacement is very necessary for obtaining urchinlike nanostructures. Through changing the molar ratios of Ag to Pt, the wall thickness of hollow nanospheres can be easily controlled; through changing the diameter of Ag nanoparticles, the size of cavity of hollow nanospheres can be facilely controlled; through changing the morphologies of Ag nanostructures from nanoparticle to nanowire, hollow Pt nanotubes can be easily designed. This one-pot approach can be extended to synthesize other hollow nanospheres such as Pd, Pd/Pt, Au/Pd, and Au/Pt. The features of this technique are that it is facile, quick, economical, and versatile.
Resumo:
Opened hollow microspheres of organoclays were prepared via spray drying the suspension of modified Na+-montmorillonite (Na+-MMT) with alkylsulfonate. The microstructure and thermal properties of these opened hollow spheres were characterized by means of wide-angle X-ray diffraction, field emission scanning electron microscopy, and thermogravimetric analysis. The results showed that the organoclays had larger interlayer spacing compared with pure Na+-MMT and higher thermal stability relative to the alkylsufonate.
Resumo:
DNA/poly-L-lysine (PLL) capsules were constructed through a layer-by-layer (LbL) self-assembly of DNA and PLL on CaCO3 microparticles, and then used as dual carriers for DNA and drug after dissolution of carbonate cores. The permeability of DNA/PLL microcapsules was investigated with fluorescence probes with different molecular weights by confocal microscopy. The result revealed that the fluorescence probes were able to penetrate the capsule walls even its molecular weight up to 150 kDa. The resultant capsules were used to load drug model molecules-fluorescein isothiocyanate (FITC)-dextran (4 kDa) via spontaneous deposition mechanism.
Resumo:
Lanthanum magnesium hexaaluminate (LMA) is very important ceramic material for catalytic combustion of natural gas. The sintering-resistant hollow fibers of LMA with diameters ranging from 1 to 3 mu m were fabricated from alcoholic solutions containing polyvinyl pyrrolidone (PVP) and aqueous solution of lanthanum, magnesium and aluminum nitrates. The interaction between PVP and nitrates were studied by X-ray diffraction and Fourier transmission-infrared spectroscopy. The forming mechanism of hollow fibers and the sintering ability of hollow LaMgAl11O19 fibers were discussed.
Resumo:
Hollow deoxyribonucleic acid (DNA)/poly-L-lysine (PLL) capsules were successfully fabricated through a layer-by-layer (LbL) self-assembly of DNA and PLL on porous CaCO3 microparticles, followed by removal of templates with ethylenediamine tetraacetic acid disodium salt (EDTA). The enzymatic degradation of the capsules in the presence of alpha-chymotrypsin was explored. The higher the enzyme concentration, the higher is the degradation rate of hollow capsules. in addition, glutaric dialdehyde (GA) cross-linking was found to be another way to manipulate degradation rate of hollow capsules.