938 resultados para Cardiomyocyte Hypertrophy
Resumo:
Acknowledgements This project was also supported by Marie Curie International Reintegration Grant 249156 (A. Lionikas) and the grants VP1-3.1-SMM-01-V-02-003 (A. Kilikevicius) and MIP-067/2012 (T. Venckunas) from the Research Council of Lithuania as well as the grant from the Ministry of Higher Education of Saudi Arabia (Y. Alhind). We wish also to thank Mrs Indre Libnickiene for her excellent technical assistance provided during the project
Resumo:
Cardiac hypertrophy and dilatation can result from stimulation of signal transduction pathways mediated by heterotrimeric G proteins, especially Gq, whose α subunit activates phospholipase Cβ (PLCβ). We now report that transient, modest expression of a hemagglutinin (HA) epitope-tagged, constitutively active mutant of the Gq α subunit (HAα*q) in hearts of transgenic mice is sufficient to induce cardiac hypertrophy and dilatation that continue to progress after the initiating stimulus becomes undetectable. At 2 weeks, HAα*q protein is expressed at less than 50% of endogenous αq/11, and the transgenic hearts are essentially normal morphologically. Although HAα*q protein declines at 4 weeks and is undetectable by 10 weeks, the animals develop cardiac hypertrophy and dilatation and die between 8 and 30 weeks in heart failure. As the pathology develops, endogenous αq/11 rises (2.9-fold in atria; 1.8-fold in ventricles). At 2 weeks, basal PLC activity is increased 9- to 10-fold in atria but not ventricles. By 10 weeks, it is elevated in both, presumably because of the rise in endogenous αq/11. We conclude that the pathological changes initiated by early, transient HAα*q expression are maintained in part by compensatory changes in signal transduction and other pathways. Cyclosporin A (CsA) prevents hypertrophy caused by activation of calcineurin [Molkentin, J. D., Lu, J.-R., Antos, C. L., Markham, B., Richardson, J., Robbins, J., Grant, S. R. & Olson, E. N. (1998) Cell 93, 215–228]. Because HAα*q acts upstream of calcineurin, we hypothesized that HAα*q might initiate additional pathways leading to hypertrophy and dilatation. Treating HAα*q mice with CsA diminished some, but not all, aspects of the hypertrophic phenotype, suggesting that multiple pathways are involved.
Resumo:
Natriuretic peptides, produced in the heart, bind to the natriuretic peptide receptor A (NPRA) and cause vasodilation and natriuresis important in the regulation of blood pressure. We here report that mice lacking a functional Npr1 gene coding for NPRA have elevated blood pressures and hearts exhibiting marked hypertrophy with interstitial fibrosis resembling that seen in human hypertensive heart disease. Echocardiographic evaluation of the mice demonstrated a compensated state of systemic hypertension in which cardiac hypertrophy and dilatation are evident but with no reduction in ventricular performance. Nevertheless, sudden death, with morphologic evidence indicative in some animals of congestive heart failure and in others of aortic dissection, occurred in all 15 male mice lacking Npr1 before 6 months of age, and in one of 16 females in our study. Thus complete absence of NPRA causes hypertension in mice and leads to cardiac hypertrophy and, particularly in males, lethal vascular events similar to those seen in untreated human hypertensive patients.
Resumo:
Transgenic overexpression of Gαq in the heart triggers events leading to a phenotype of eccentric hypertrophy, depressed ventricular function, marked expression of hypertrophy-associated genes, and depressed β-adrenergic receptor (βAR) function. The role of βAR dysfunction in the development of this failure phenotype was delineated by transgenic coexpression of the carboxyl terminus of the βAR kinase (βARK), which acts to inhibit the kinase, or concomitant overexpression of the β2AR at low (≈30-fold, Gαq/β2ARL), moderate (≈140-fold, Gαq/β2ARM), and high (≈1,000-fold, Gαq/β2ARH) levels above background βAR density. Expression of the βARK inhibitor had no effect on the phenotype, consistent with the lack of increased βARK levels in Gαq mice. In marked contrast, Gαq/β2ARL mice displayed rescue of hypertrophy and resting ventricular function and decreased cardiac expression of atrial natriuretic factor and α-skeletal actin mRNA. These effects occurred in the absence of any improvement in basal or agonist-stimulated adenylyl cyclase (AC) activities in crude cardiac membranes, although restoration of a compartmentalized β2AR/AC signal cannot be excluded. Higher expression of receptors in Gαq/β2ARM mice resulted in salvage of AC activity, but hypertrophy, ventricular function, and expression of fetal genes were unaffected or worsened. With ≈1,000-fold overexpression, the majority of Gαq/β2ARH mice died with cardiomegaly at 5 weeks. Thus, although it appears that excessive, uncontrolled, or generalized augmentation of βAR signaling is deleterious in heart failure, selective enhancement by overexpressing the β2AR subtype to limited levels restores not only ventricular function but also reverses cardiac hypertrophy.
Resumo:
Guanylyl cyclase-A (NPR-A; GC-A) is the major and possibly the only receptor for atrial natriuretic peptide (ANP) or B-type natriuretic peptide. Although mice deficient in GC-A display an elevated blood pressure, the resultant cardiac hypertrophy is much greater than in other mouse models of hypertension. Here we overproduce GC-A in the cardiac myocytes of wild-type or GC-A null animals. Introduction of the GC-A transgene did not alter blood pressure or heart rate as a function of genotype. Cardiac myocyte size was larger (approximately 20%) in GC-A null than in wild-type animals. However, introduction of the GC-A transgene reduced cardiac myocyte size in both wild-type and null mice. Coincident with the reduction in myocyte size, both ANP mRNA and ANP content were significantly reduced by overexpression of GC-A, and this reduction was independent of genotype. This genetic model, therefore, separates a regulation of cardiac myocyte size by blood pressure from local regulation by a GC-mediated pathway.
Resumo:
The Ca2+-calmodulin-activated Ser/Thr protein phosphatase calcineurin and the downstream transcriptional effectors of calcineurin, nuclear factor of activated T cells, have been implicated in the hypertrophic response of the myocardium. Recently, the calcineurin inhibitory agents cyclosporine A and FK506 have been extensively used to evaluate the importance of this signaling pathway in rodent models of cardiac hypertrophy. However, pharmacologic approaches have rendered equivocal results necessitating more specific or genetic-based inhibitory strategies. In this regard, we have generated Tg mice expressing the calcineurin inhibitory domains of Cain/Cabin-1 and A-kinase anchoring protein 79 specifically in the heart. ΔCain and ΔA-kinase-anchoring protein Tg mice demonstrated reduced cardiac calcineurin activity and reduced hypertrophy in response to catecholamine infusion or pressure overload. In a second approach, adenoviral-mediated gene transfer of ΔCain was performed in the adult rat myocardium to evaluate the effectiveness of an acute intervention and any potential species dependency. ΔCain adenoviral gene transfer inhibited cardiac calcineurin activity and reduced hypertrophy in response to pressure overload without reducing aortic pressure. These results provide genetic evidence implicating calcineurin as an important mediator of the cardiac hypertrophic response in vivo.
Resumo:
Signaling events controlled by calcineurin promote cardiac hypertrophy, but the degree to which such pathways are required to transduce the effects of various hypertrophic stimuli remains uncertain. In particular, the administration of immunosuppressive drugs that inhibit calcineurin has inconsistent effects in blocking cardiac hypertrophy in various animal models. As an alternative approach to inhibiting calcineurin in the hearts of intact animals, transgenic mice were engineered to overexpress a human cDNA encoding the calcineurin-binding protein, myocyte-enriched calcineurin-interacting protein-1 (hMCIP1) under control of the cardiac-specific, α-myosin heavy chain promoter (α-MHC). In unstressed mice, forced expression of hMCIP1 resulted in a 5–10% decline in cardiac mass relative to wild-type littermates, but otherwise produced no apparent structural or functional abnormalities. However, cardiac-specific expression of hMCIP1 inhibited cardiac hypertrophy, reinduction of fetal gene expression, and progression to dilated cardiomyopathy that otherwise result from expression of a constitutively active form of calcineurin. Expression of the hMCIP1 transgene also inhibited hypertrophic responses to β-adrenergic receptor stimulation or exercise training. These results demonstrate that levels of hMCIP1 producing no apparent deleterious effects in cells of the normal heart are sufficient to inhibit several forms of cardiac hypertrophy, and suggest an important role for calcineurin signaling in diverse forms of cardiac hypertrophy. The future development of measures to increase expression or activity of MCIP proteins selectively within the heart may have clinical value for prevention of heart failure.
Resumo:
Utilizing an in vitro model system of cardiac muscle cell hypertrophy, we have identified a retinoic acid (RA)-mediated pathway that suppresses the acquisition of specific features of the hypertrophic phenotype after exposure to the alpha-adrenergic receptor agonist phenylephrine. RA at physiological concentrations suppresses the increase in cell size and induction of a genetic marker for hypertrophy, the atrial natriuretic factor (ANF) gene. RA also suppresses endothelin 1 pathways for cardiac muscle cell hypertrophy, but it does not affect the increase in cell size and ANF expression induced by serum stimulation. A trans-activation analysis using a transient transfection assay reveals that neonatal rat ventricular myocardial cells express functional RA receptors of both the retinoic acid receptor and retinoid X receptor (RAR and RXR) subtypes. Using synthetic agonists of RA, which selectively bind to RXR or RAR, our data indicate that RAR/RXR heterodimers mediate suppression of alpha-adrenergic receptor-dependent hypertrophy. These results suggest the possibility that a pathway for suppression of hypertrophy may exist in vivo, which may have potential therapeutic value.
Resumo:
To investigate the physiological roles of gp130 in detail and to determine the pathological consequence of abnormal activation of gp130, transgenic mice having continuously activated gp130 were created. This was carried out by mating mice from interleukin 6 (IL-6) and IL-6 receptor (IL-6R) transgenic lines. Offspring overexpressing both IL-6 and IL-6R showed constitutive tyrosine phosphorylation of gp130 and a downstream signaling molecule, acute phase response factor/signal transducer and activator of transcription 3. Surprisingly, the distinguishing feature of such offspring was hypertrophy of ventricular myocardium and consequent thickened ventricular walls of the heart, where gp130 is also expressed, in adulthood. Transgenic mice overexpressing either IL-6 or IL-6R alone did not show detectable myocardial abnormalities. Neonatal heart muscle cells from normal mice, when cultured in vitro, enlarged in response to a combination of IL-6 and a soluble form of IL-6R. The results suggest that activation of the gp130 signaling pathways leads to cardiac hypertrophy and that these signals might be involved in physiological regulation of myocardium.
Resumo:
L’insuffisance cardiaque (IC) est associée à un taux de mortalité et d’hospitalisations élevé causant un fardeau économique important. Les deux causes majeures de décès de l’IC sont les arythmies ventriculaires létales et les sidérations myocardiques. Il est maintenant reconnu que l’angiotensine II (ANGII) est l'un des principaux médiateurs de l’IC. Ses effets délétères découlent de l’activation du récepteur de type 1 de l’ANGII (AT1) et entraînent le développement d’hypertrophie. Toutefois, son rôle dans la genèse d’arythmies demeure incompris. De ce fait, l'étude des mécanismes électriques et contractiles sous-jacents aux effets pathologiques de l’ANGII s’avère essentielle afin de mieux comprendre et soigner cette pathologie. Il est souvent perçu que les femmes sont protégées envers les maladies cardiovasculaires. Cependant, le nombre total de femmes décédant d’IC est plus grand que le nombre d’hommes. Également, l’impact des facteurs de risque diffère entre chaque sexe. Ces différences existent, mais les mécanismes sous-jacents sont encore peu connus. De plus, les femmes reçoivent fréquemment un diagnostic ou un traitement inapproprié en raison d’un manque d’information sur les différences entre les sexes dans la manifestation d’une pathologie. Ce manque de données peut découler du fait que les sujets de sexe féminin sont souvent sous-représentés dans les essais cliniques ou la recherche fondamentale ce qui a grandement limité l’avancement de nos connaissances sur ~50 % de la population. Ainsi, il semble plus que nécessaire d’approfondir notre compréhension des différences entre les sexes, notamment dans la progression de l’IC. L’utilisation d’un modèle de souris transgénique surexprimant le récepteur AT1 (souris AT1R) a permis d’étudier les changements électriques, structurels et contractiles avant et après le développement d’hypertrophie. Premièrement, chez les souris AT1R mâles, un ralentissement de la conduction ventriculaire a été observé indépendamment de l’hypertrophie. Ce résultat était expliqué par une réduction de la densité du courant Na+, mais pas de l’expression du canal. Ensuite, le rôle des protéines kinases C (PKC) dans la régulation du canal Na+ par l’ANGII a été exploré. Les évidences ont suggéré que la PKCα était responsable de la modulation de la diminution du courant Na+ chez les souris AT1R mâles et dans les cardiomyocytes humains dérivés de cellules souches induites pluripotentes (hiPSC-CM) en réponse à un traitement chronique à l’ANGII. Ensuite, les différences entre les sexes ont été comparées chez la souris AT1R. Une plus grande mortalité a été constatée chez les femelles AT1R suggérant qu’elles sont plus sensibles à la surexpression de AT1R. Le remodelage électrique ventriculaire a donc été comparé entre les souris AT1R des deux sexes. Les courants ioniques étaient altérés de façon similaire entre les sexes excluant ainsi leur implication dans la mortalité plus élevée chez les femelles. Ensuite, l’homéostasie calcique et la fonction cardiaque ont été étudiées. Il a été démontré que les femelles développaient une hypertrophie et une dilatation ventriculaire plus sévère que les mâles. De plus, les femelles AT1R avaient de petits transitoires calciques, une extrusion du Ca2+ plus lente ainsi qu’une augmentation de la fréquence des étincelles Ca2+ pouvant participer à des troubles contractiles et à la venue de post-dépolarisations précoces. En conclusion, l’ANGII est impliquée dans le remodelage électrique, structurel et calcique associé à l'émergence de l’IC. De surcroît, ces altérations affectent plus sévèrement les femelles soulignant la présence de différences entre les sexes dans le développement de l’IC.
Resumo:
Objective: The calcineurin pathway has been involved in the development of cardiac hypertrophy, yet it remains unknown whether calcineurin activity can be regulated in myocardium independently from hypertrophy and cardiac load. Methods: To test that hypothesis, we measured calcineurin activity in a rat model of infrarenal aortic constriction (IR), which affects neurohormonal pathways without increasing cardiac afterload. Results: In this model, there was no change in arterial pressure over the 4-week experimental period, and the left ventricle/body weight ratio did not increase. At 2 weeks after IR, calcineurin activity was increased 1.8-fold (P
Resumo:
OBJECTIVES We sought to determine if a hypertensive response to exercise (HRE) is associated with myocardial changes consistent with early hypertensive heart disease. BACKGROUND An HRE predicts the development of chronic hypertension (HT) and may reflect a preclinical stage of HT. METHODS Patients with a normal left ventricular (LV) ejection fraction and a negative stress test were recruited into three matched groups: 41 patients (age 56 +/- 10 years) with HRE (210/105 mm Hg in men; > 190/105 in women), comprising 22 patients with (HT+) and 19 without resting hypertension (HT-); and 17 matched control subjects without HRE. Long-axis function was determined by measurement of the strain rate (SR), peak systolic strain, and cyclic variation (CV) of integrated backscatter in three apical views. RESULTS An HRE was not associated with significant differences in LV mass index. Exercise performance and diastolic function were reduced in HRE(HT+) patients, but similar in HRE(HT-) patients and controls. Systolic dysfunction (peak systolic strain, SR, and CV) was significantly reduced in HRE patients (p < 0.001 for all). These reductions were equally apparent in patients with and without a history of resting HT (p = NS) and were independent of LV mass index and blood pressure (p < 0.01). CONCLUSIONS An HRE is associated with subtle systolic dysfunction, even in the absence of resting HT. These changes occur before the development of LV hypertrophy or detectable diastolic dysfunction and likely represent early hypertensive heart disease. (C) 2004 by the American College of Cardiology Foundation.
Resumo:
Eukaryotic gene expression, reflected in the amount of steady-state mRNA, is regulated at the post-transcriptional level. The 5'-untranslated regions (5'-UTRs) of some transcripts contain cis-acting elements, including upstream open reading frames (uORFs), that have been identified as being fundamental in modulating translation efficiency and mRNA stability. Previously, we demonstrated that uORFs present in the 5'-UTR of cystic fibrosis transmembrane conductance regular (CFTR) transcripts expressed in the heart were able to modulate translation efficiency of the main CFTR ORF. Here, we show that the same 5'-UTR elements are associated with the differential stability of the 5'-UTR compared to the main coding region of CFTR transcripts. Furthermore, these post-transcriptional mechanisms are important factors governing regulated CFTR expression in the heart, in response to developmental and pathophysiological stimuli. (C) 2004 Elsevier Inc. All rights reserved.