952 resultados para Carcinoma do colo do útero
Resumo:
BACKGROUND. Laboratory data suggest that insulin-like growth factor-1 (IGE-1) may stimulate the growth of different human tumors. At least in acromegalic patients, somatostatin (SMS) analogs, such as lanreotide, suppress the serum levels of growth hormone (GH) and IGE-1. METHODS. To evaluate the tolerability and biologic activity of different doses of lanreotide in patients with advanced colorectal carcinoma, consecutive groups of 3 patients each were subcutaneous treated with lanreotide at doses of 1, 2, 3, 4, 5, or 6 mg three times a day for 2 months. In the event of Grade 3 side effects, 3 additional patients were treated with the same dose before the next dose escalation. Serum samples were obtained on Days 0, 15, 30, and 60 for serum GH, IGF-1, and lanreotide assessment. RESULTS. Twenty-four patients were enrolled and all were evaluable. Except for the 3 and 6 mg doses, for which the observation of a Grade 3 side effect required that an additional three patients be treated, it was sufficient to treat 3 patients at each dose. The overall incidence of side effects was as follows: changes in bowel habits, 83%; abdominal cramps, 79%; diarrhea, 17%; vomiting, 17%; nausea, 21%; steatorrhea, 78%; hyperglycemia, 35%; laboratory hypothyroidism, 39%; gallstones, 13%; and weight loss, 17%. No evidence of an increase in the incidence, intensity, or duration of side effects was observed with dose escalation. Serum IGF-1 levels were as follows: Day 13: 63%, 60%, and 67% of the baseline values for the low (12 mg), intermediate (3-4 mg), and high (5- 6 mg) dose groups, respectively; Day 30: 63%, 59%, and 51%, respectively; and Day 60: 73%, 69%, and 47%, respectively. Serum lanreotide levels declined during treatment in all of the dose groups (90 ng/mL on Day 15, and 35 ng/mL on Day 60 for the 5-6 mg group; 10 ng/mL on Day 15, and 1.5 ng/mL on Day 60 for the 1-2 mg group). No antitumor activity or tumor marker reduction was observed. CONCLUSIONS. No increase in toxicity was observed when subcutaneous lanreotide doses were escalated to 6 mg three times a day for 2 months. The highest doses seemed to maintain reduced serum IGF-1 levels; with the lowest doses, a 'rebound' in serum IGF-1 levels was observed during treatment. Nevertheless, intermittent subcutaneous injections do not ensure constant serum drug concentrations over time.
Resumo:
The quantitative assessment of apoptotic index (AI) and mitotic index (MI) and the immunoreactivity of p53, bcl-2, p21, and mdm2 were examined in tumour and adjacent normal tissue samples from 30 patients with colonic and 22 with rectal adenocarcinoma. Individual features and combined profiles were correlated with clinicopathological parameters and patient survival data to assess their prognostic value. Increased AI was significantly associated with increased bcl-2 expression (p
Resumo:
Objectives; Antisense oligonucleotides (AO) downregulate Bcl-2 protein expression in various tumours if good target cell uptake is achieved. In this study, uptake of FITC labelled AO (FITC-AO) directed at Bcl-2 was examined in; (1) the RT4 bladder tumour cell line (2) normal pig urothelium and (3) human superficial bladder tumours. Methods; In the RT4 cell line, uptake of FITC-AO, FITC-scrambled and FITC-sense oligonucleotides were quantified by flow cytometry at 4h intervals over 24h. Uptake of FITC-AO was assessed in normal pig urothelium by flow cytometry after FITC-AO was infused for 1h. Uptake of FITC AO was assessed in samples from 14 human superficial bladder tumours which were maintained in an ex vivo model. In samples from 6 tumours, uptake at 4h was assessed using fluorescence microscopy. In samples from 8 separate tumours uptake every 4h within the first 24h incubation period was assessed by flow cytometry. Results; In the RT4 cell line the FITC-AO, FITC-scrambled and FITC-sense oligonucleotide uptake was similar. Disaggregated cells from the normal urothelium of the three pigs exhibited 33%, 46%, 51% of cells staining positively for FITC-AO as determined by flow cytometry. All 6 tumour samples had detectable intracellular FITC-AO by fluorescence microscopy at 4h. In the 8 tumours ,examined over the 24h incubation period, there was a range of percentages of positively staining cells. However, most tumours had a monotonic increase in intracellular fluorescence intensity that plateaued 16h post infusion. Conclusion; Antisense Bcl-2 oligonucleotides were readily taken up by superficial bladder cancer cells but the heterogenous uptake in tumour samples needs to be considered when assessing the bioavailability of these drugs.
Resumo:
The 2-year survival rate after conventional radiotherapy for carcinoma of the oesophagus is around 10–20% [8]. Concomitant chemoradiation schedules have produced survival figures of 25–30% at 5 years, and this is now considered standard treatment [1]. Conformal radiotherapy techniques offer the potential to deliver higher doses of radiation to oesophageal tumours [5], and this may improve local tumour control. However, concerns regarding late normal tissue damage to the lung parenchyma and spinal cord remain a concern. Intensitymodulated radiotherapy (IMRT) allows complex dose distributions to be produced, and can reduce the dose to radiosensitive organs close to the tumour [2]. The present study was designed to investigate the impact of beam intensity modulation on treatment planning for carcinoma of the oesophagus, by comparing a standard three-dimensional conformal radiotherapy (3DCRT) technique to an IMRT technique using the same number and orientation of treatment fields.
Resumo:
Background and purpose: To compare external beam radiotherapy techniques for parotid gland tumours using conventional radiotherapy (RT), three-dimensional conformal radiotherapy (3DCRT), and intensity-modulated radiotherapy (IMRT). To optimise the IMRT techniques, and to produce an IMRT class solution.Materials and methods: The planning target volume (PTV), contra-lateral parotid gland, oral cavity, brain-stem, brain and cochlea were outlined on CT planning scans of six patients with parotid gland tumours. Optimised conventional RT and 3DCRT plans were created and compared with inverse-planned IMRT dose distributions using dose-volume histograms. The aim was to reduce the radiation dose to organs at risk and improve the PTV dose distribution. A beam-direction optimisation algorithm was used to improve the dose distribution of the IMRT plans, and a class solution for parotid gland IMRT was investigated.Results: 3DCRT plans produced an equivalent PTV irradiation and reduced the dose to the cochlea, oral cavity, brain, and other normal tissues compared with conventional RT. IMRT further reduced the radiation dose to the cochlea and oral cavity compared with 3DCRT. For nine- and seven-field IMRT techniques, there was an increase in low-dose radiation to non-target tissue and the contra-lateral parotid gland. IMRT plans produced using three to five optimised intensity-modulated beam directions maintained the advantages of the more complex IMRT plans, and reduced the contra-lateral parotid gland dose to acceptable levels. Three- and four-field non-coplanar beam arrangements increased the volume of brain irradiated, and increased PTV dose inhomogeneity. A four-field class solution consisting of paired ipsilateral coplanar anterior and posterior oblique beams (15, 45, 145 and 170o from the anterior plane) was developed which maintained the benefits without the complexity of individual patient optimisation.Conclusions: For patients with parotid gland tumours, reduction in the radiation dose to critical normal tissues was demonstrated with 3DCRT compared with conventional RT. IMRT produced a further reduction in the dose to the cochlea and oral cavity. With nine and seven fields, the dose to the contra-lateral parotid gland was increased, but this was avoided by optimisation of the beam directions. The benefits of IMRT were maintained with three or four fields when the beam angles were optimised, but were also achieved using a four-field class solution. Clinical trials are required to confirm the clinical benefits of these improved dose distributions.
Resumo:
Immunohistochemical studies on formalin-fixed, paraffin-embedded (FFPE) tissue utilizing polyclonal antibodies form the cornerstone of many reports claiming to demonstrate erythropoietin receptor (EPOR) expression in malignant tissue. Recently, Elliott et al. (Blood 2006;107:1892-1895) reported that the antibodies commonly used to detect EPOR expression also detect non-EPOR proteins, and that their binding to EPOR was severely abrogated by two synthetic peptides based on the sequence of heat shock protein (HSP) 70, HSP70-2, and HSP70-5. We have investigated the specificity of the C20 antibody for detecting EPOR expression in non-small cell lung carcinoma (NSCLC) utilizing tissue microarrays. A total of 34 cases were available for study. Antibody absorbed with peptide resulted in marked suppression of cytoplasmic staining compared with nonabsorbed antibody. Four tumors that initially showed a membranous pattern of staining retained this pattern with absorbed antibody. Positive membranous immunoreactivity was also observed in 6 of 30 tumors that originally showed a predominantly cytoplasmic pattern of staining. Using the C20 antibody for Western blots, we detected three main bands, at 100, 66, and 59 kDa. Preincubation with either peptide caused abolition of the 66-kDa band, which contains non-EPOR sequences including heat shock peptides. These results call into question the significance of previous immunohistochemical studies of EPOR expression in malignancy and emphasize the need for more specific anti-EPOR antibodies to define the true extent of EPOR expression in neoplastic tissue