979 resultados para Carbon isotopes, Salt Ranges, Kashmir, Himalaya, Nepal, rifting, sequence stratigraphy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite a wealth of data on the neurotoxic effects of lead at the cellular and molecular levels, the reasons for its development-dependent neurotoxicity are still unclear. Here, the maturation-dependent effects of lead acetate were analyzed in immature and differentiated brain cells cultured in aggregates. Markers of general cytotoxicity as well as cell-type-specific markers of glial and neuronal cells showed that immature brain cells were more sensitive to lead than the differentiated counterparts, demonstrating that the development-dependent neurotoxicity of lead can be reproduced in aggregating brain cell cultures. After 10 days of treatment, astrocytes were found to be more affected by lead acetate than neurons in immature cultures, and microglial cells were strongly activated. Eleven days after cessation of the treatment, lead acetate caused a partial loss of astrocytes and an intense reactivity of the remaining ones. Furthermore, microglial cells expressed a macrophagic phenotype, and the loss of activity of neuron-specific enzymes was aggravated. In differentiated cultures, no reactive gliosis was found. It is hypothetized that the intense glial reactions (microgliosis and astrogliosis) observed in immature cultures contribute to the development-dependent neurotoxicity of lead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rates of protein synthesis (PS) and turnover are more rapid during the neonatal period than during any other stage of postnatal life. Vitamin A and lactoferrin (Lf) can stimulate PS in neonates. However, newborn calves are vitamin A deficient and have a low Lf status, but plasma vitamin A and Lf levels increase rapidly after ingestion of colostrum. Neonatal calves (n = 6 per group) were fed colostrum or a milk-based formula without or with vitamin A, Lf, or vitamin A plus Lf to study PS in the jejunum and liver. l-[(13)C]Valine was intravenously administered to determine isotopic enrichment of free (nonprotein-bound) Val (AP(Free)) in the protein precursor pool, atom percentage excess (APE) of protein-bound Val, fractional protein synthesis rate (FSR) in the jejunum and liver, and isotopic enrichment of Val in plasma (APE(Pla)) and in the CO(2) of exhaled air (APE(Ex)). The APE, AP(Free), and FSR in the jejunum and liver did not differ significantly among groups. The APE(Ex) increased, whereas APE(Pla) decreased over time, but there were no group differences. Correlations were calculated between FSR(Jej) and histomorphometrical and histochemical data of the jejunum, and between FSR(Liv) and blood metabolites. There were negative correlations between FSR(Liv) and plasma albumin concentrations and between FSR(Jej) and the ratio of villus height:crypt depth, and there was a positive correlation between FSR(Jej) and small intestinal cell proliferation in crypts. Hence, there were no effects of vitamin A and Lf and no interactions between vitamin A and Lf on intestinal and hepatic PS. However, FSR(Jej) was correlated with histomorphometrical traits of the jejunum and FSR(Liv) was correlated with plasma albumin concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Astrocytes have recently become a major center of interest in neurochemistry with the discoveries on their major role in brain energy metabolism. An interesting way to probe this glial contribution is given by in vivo (13) C NMR spectroscopy coupled with the infusion labeled glial-specific substrate, such as acetate. In this study, we infused alpha-chloralose anesthetized rats with [2-(13) C]acetate and followed the dynamics of the fractional enrichment (FE) in the positions C4 and C3 of glutamate and glutamine with high sensitivity, using (1) H-[(13) C] magnetic resonance spectroscopy (MRS) at 14.1T. Applying a two-compartment mathematical model to the measured time courses yielded a glial tricarboxylic acid (TCA) cycle rate (Vg ) of 0.27 ± 0.02 μmol/g/min and a glutamatergic neurotransmission rate (VNT ) of 0.15 ± 0.01 μmol/g/min. Glial oxidative ATP metabolism thus accounts for 38% of total oxidative metabolism measured by NMR. Pyruvate carboxylase (VPC ) was 0.09 ± 0.01 μmol/g/min, corresponding to 37% of the glial glutamine synthesis rate. The glial and neuronal transmitochondrial fluxes (Vx (g) and Vx (n) ) were of the same order of magnitude as the respective TCA cycle fluxes. In addition, we estimated a glial glutamate pool size of 0.6 ± 0.1 μmol/g. The effect of spectral data quality on the fluxes estimates was analyzed by Monte Carlo simulations. In this (13) C-acetate labeling study, we propose a refined two-compartment analysis of brain energy metabolism based on (13) C turnover curves of acetate, glutamate and glutamine measured with state of the art in vivo dynamic MRS at high magnetic field in rats, enabling a deeper understanding of the specific role of glial cells in brain oxidative metabolism. In addition, the robustness of the metabolic fluxes determination relative to MRS data quality was carefully studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Acetate metabolism in skeletal muscle is regulated by acetylCoA synthetase (ACS). The main function of ACS is to provide cells with acetylCoA, a key molecule for numerous metabolic pathways including fatty acid and cholesterol synthesis and the Krebs cycle. METHODS: Hyperpolarized [1-(13)C]acetate prepared via dissolution dynamic nuclear polarization was injected intravenously at different concentrations into rats. The (13)C magnetic resonance signals of [1-(13)C]acetate and [1-(13)C]acetylcarnitine were recorded in vivo for 1min. The kinetic rate constants related to the transformation of acetate into acetylcarnitine were deduced from the 3s time resolution measurements using two approaches, either mathematical modeling or relative metabolite ratios. RESULTS: Although separated by two biochemical transformations, a kinetic analysis of the (13)C label flow from [1-(13)C]acetate to [1-(13)C]acetylcarnitine led to a unique determination of the activity of ACS. The in vivo Michaelis constants for ACS were KM=0.35±0.13mM and Vmax=0.199±0.031μmol/g/min. CONCLUSIONS: The conversion rates from hyperpolarized acetate into acetylcarnitine were quantified in vivo and, although separated by two enzymatic reactions, these rates uniquely defined the activity of ACS. The conversion rates associated with ACS were obtained using two analytical approaches, both methods yielding similar results. GENERAL SIGNIFICANCE: This study demonstrates the feasibility of directly measuring ACS activity in vivo and, since the activity of ACS can be affected by various pathological states such as cancer or diabetes, the proposed method could be used to non-invasively probe metabolic signatures of ACS in diseased tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel approach to the study of hepatic glycogen kinetics and fractional gluconeogenesis in vivo is described. Ten healthy female subjects were fed an iso-caloric diet containing 55% carbohydrate energy with a 13C abundance of 1.083 atom percent for a 3-day baseline period; then, a diet of similar composition, but providing carbohydrate with a 13C abundance of 1.093 atom percent was started and continued for 5 days. Resting respiratory gas exchanges, urinary nitrogen excretion, breath 13CO2 and plasma 13C glucose were measured every morning in the fasting state. The enrichment in 13C of hepatic glycogen was calculated from these measured data. 13C glycogen enrichment increased after switching to a 13C enriched carbohydrate diet, and was identical to the 13C enrichment of dietary carbohydrates after 3 days. The time required to renew 50% of hepatic glycogen, as determined from the kinetics of 13C glycogen enrichment, was 18.9 +/- 3.6 h. Fractional gluconeogenesis, as determined from the difference between the enrichments of glucose oxidized originating from hepatic glycogen and plasma glucose 13C was 50.8 +/- 5.3%. This non-invasive method will allow the study of hepatic glycogen metabolism in insulin-resistant patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fat balance plays an important role in fat mass regulation. The mechanisms by which fat intake and fat oxidation are controlled are poorly understood. In particular, no data are available on the origin, i.e. exogenous (meal intake) or endogenous (adipose tissue lipolysis), of fat oxidized during the postprandial period in children and the proportion between these two components. In this study we tested the hypothesis that there is a relationship between adiposity and the oxidative fate of fat taken with a mixed meal in a group of 15 children with a wide range of fat mass (9-64%). The combination of stable isotope analysis ([13C] enriched fatty acids added to a mixed meal) and indirect calorimetry allowed us to differentiate between the exogenous and endogenous resting fat oxidation rate over the 9-h postprandial period. During the 9 hours of the postprandial period, the children oxidized an amount of fat comparable to that ingested with the meal [26.8 (+/-2.31) g vs. 26.4 (+/-2.3) g, respectively, P = ns]. On average, exogenous fat oxidation [2.99 (+/-3.0) g/9 h] represented 10.8% (+/-0.9) of total fat oxidation. Endogenous fat oxidation, calculated as the difference between total fat oxidation and exogenous fat oxidation, averaged 23.4 (+/-1.9) g/9 h and represented 88.2% (+/-0.9) of total fat oxidation. Endogenous fat oxidation as well as exogenous fat oxidation were highly correlated to total fat oxidation (r = 0.83, P < 0.001; r = 0.84, P < 0.001, respectively). Exogenous fat oxidation expressed as a proportion of total fat oxidation was directly related to fat mass (r = 0.56, P < 0.03), while endogenous fat oxidation expressed as a proportion of total fat oxidation was inversely related (r = -0.57, P < 0.03) to the degree of adiposity. The enhanced exogenous fat oxidation observed when adiposity increases in the dynamic phase of obesity may be viewed as a protective mechanism to prevent further increase in fat mass and hence to maintain fat oxidation at a sufficient rate when the body is exposed to a high amount of dietary fat, as typically encountered in obese children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to the annual report of the World Anti-Doping Agency, steroids are the most frequently detected class of doping agents. Detecting the misuse of endogenously occurring steroids, i.e. steroids such as testosterone that are produced naturally by humans, is one of the most challenging issues in doping control analysis. The established thresholds for urinary concentrations or concentration ratios such as the testosterone/epitestosterone quotient are sometimes inconclusive owing to the large biological variation in these parameters.For more than 15 years, doping control laboratories focused on the carbon isotope ratios of endogenous steroids to distinguish between naturally elevated steroid profile parameters and illicit administration of steroids. A variety of different methods has been developed throughout the last decade and the number of different steroids under investigation by isotope ratio mass spectrometry has recently grown considerably. Besides norandrosterone, boldenone was found to occur endogenously in rare cases and the misuse of corticosteroids or epitestosterone can now be detected with the aid of carbon isotope ratios as well. In addition, steroids excreted as sulfoconjugates were investigated, and the first results regarding hydrogen isotope ratios recently became available.All of these will be presented in detail within this review together with some considerations on validation issues and on identification of parameters influencing steroidal isotope ratios in urine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have recently shown that at isotopic steady state (13)C NMR can provide a direct measurement of glycogen concentration changes, but that the turnover of glycogen was not accessible with this protocol. The aim of the present study was to design, implement and apply a novel dual-tracer infusion protocol to simultaneously measure glycogen concentration and turnover. After reaching isotopic steady state for glycogen C1 using [1-(13)C] glucose administration, [1,6-(13)C(2)] glucose was infused such that isotopic steady state was maintained at the C1 position, but the C6 position reflected (13)C label incorporation. To overcome the large chemical shift displacement error between the C1 and C6 resonances of glycogen, we implemented 2D gradient based localization using the Fourier series window approach, in conjunction with time-domain analysis of the resulting FIDs using jMRUI. The glycogen concentration of 5.1 +/- 1.6 mM measured from the C1 position was in excellent agreement with concomitant biochemical determinations. Glycogen turnover measured from the rate of label incorporation into the C6 position of glycogen in the alpha-chloralose anesthetized rat was 0.7 micromol/g/h.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Full signal intensity (1)H-[(13)C] NMR spectroscopy, combining a preceding (13)C-editing block based on an inversion BISEP (B(1)-insensitive spectral editing pulse) with a spin-echo coherence-based localization, was developed and implemented at 14.1 T. (13)C editing of the proposed scheme was achieved by turning on and off the (13)C adiabatic full passage in the (13)C-editing block to prepare inverted and noninverted (13)C-coupled (1)H coherences along the longitudinal axis prior to localization. The novel (1)H-[(13)C] NMR approach was applied in vivo under infusion of the glia-specific substrate [2-(13)C] acetate. Besides a approximately 50% improvement in sensitivity, spectral dispersion was enhanced at 14.1 T, especially for J-coupled metabolites such as glutamate and glutamine. A more distinct spectral structure at 1.9-2.2 ppm(parts per million) was observed, e.g., glutamate C3 showed a doublet pattern in both simulated (1)H spectrum and in vivo (13)C-edited (1)H NMR spectra. Besides (13)C time courses of glutamate C4 and glutamine C4, the time courses of glutamate C3 and glutamine C3 obtained by (1)H-[(13)C] NMR spectroscopy were reported for the first time. Such capability should greatly improve the ability to study neuron-glial metabolism using (1)H-observed (13)C-edited NMR spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two minor saponins obtained from the methanolic extract of the leaves of Ilex paraguariensis have been characterised by 13C-NMR, 1H-NMR, API-MS and chemical hydrolysis as oleanolic acid-3-O-(beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl)-(28-->1)- beta-D-glucopyranosyl ester (guaiacin B) and oleanolic acid-3-O-(beta-D-glucopyranosyl-(1-->3)-(alpha-L-rhamnopyranosyl- (1-->2))-alpha-L-arabinopyranosyl)-(28-->1)-beta-D-glucopyranosyl ester (nudicaucin C). Both are isomeric forms of the known matesaponins 1 (MSP 1) and 2 (MSP 2) and differ only by the nature of the aglycone: they have oleanolic acid instead of ursolic acid, as found in the matesaponins. These minor saponins have not been fully separated from their major isomers MSP 1 and 2 and were characterised by in-mixture NMR analysis, LC-MS and LC-MSn experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Wadi Wasit area (Central Oman Mountains), Dienerian breccias are widespread. These breccias consist mostly of Guadalupian reefal blocks, often dolomitised, and some rare small-sized blocks of lowermost Triassic bivalve-bearing limestones. A unique block, with a size of about 200 m(3), including Permian and earliest Triassic faunas has been studied in detail. The so-called Wadi Wasit block consists of three major lithological units. A basal unstratified grey limestone is rich in various reef-building organisms (rugose corals, calcareous sponges, stromatoporoids) and has been dated as Middle Permian. It is disconformably overlain by well- and thin-bedded light grey to yellowish coloured limestones rich in molluscs. Two major lithologies (Coquina Limestone respectively Bioclastic Limestone unit) characterise the shelly limestones, their contact seems gradual. These two units are well-dated; they are of Griesbachian age and contain three conodont zones, the Parvus Zone, the Staeschei Zone and the Sosioensis Zone, and two ammonoid zones, the Ophiceras tibeticum Zone and an 'unnamed interval'. The third unit consists of a grey marly limestone containing Neospathodus kummeli (basal Dienerian). It is the first record of well-dated basal Triassic sediments in the Arabian Peninsula. The Coquina Limestone is dominated by the bivalve Promyalina with some Claraia and Eumorphotis. This bivalve association is interpreted as a pioneering opportunistic assemblage. Towards the top of the Bioclastic Limestone unit, the faunal diversity increases and contains probably more than 20 taxa of bivalves, microgastropods, crinoids, brachiopods, ammonoids, echinoid spines, ostracods and conodonts. The generic diversity of this biofacies exceeds by far any other Griesbachian assemblage known. Our data give new evidence for the geodynamical history for the distal carbonate shelf bordering the Hawasina Basin. A break in the sedimentation characterises the Late Permian. The basal Triassic shows a steady transgression and the breccias may record a distinct gravitational collapse of platform margins linked with sea-level low stand at the end of Induan time (late Dienerian-basal Smithian). delta(13)C(carb) isotopic analyses were performed and yield typical Permian values of around 4parts per thousand for the Reefal Limestone, with a strong negative shift across the Permian-Triassic boundary. During the Griesbachian values shift positively from 0.5 to 3.1parts per thousand parallel to an increase in faunal diversity and probably primary productivity. The detailed faunal analysis and the discovery of an unexpected diversity give,us a new understanding of the recovery of the Early Triassic marine ecosystem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identification and relative quantification of hundreds to thousands of proteins within complex biological samples have become realistic with the emergence of stable isotope labeling in combination with high throughput mass spectrometry. However, all current chemical approaches target a single amino acid functionality (most often lysine or cysteine) despite the fact that addressing two or more amino acid side chains would drastically increase quantifiable information as shown by in silico analysis in this study. Although the combination of existing approaches, e.g. ICAT with isotope-coded protein labeling, is analytically feasible, it implies high costs, and the combined application of two different chemistries (kits) may not be straightforward. Therefore, we describe here the development and validation of a new stable isotope-based quantitative proteomics approach, termed aniline benzoic acid labeling (ANIBAL), using a twin chemistry approach targeting two frequent amino acid functionalities, the carboxylic and amino groups. Two simple and inexpensive reagents, aniline and benzoic acid, in their (12)C and (13)C form with convenient mass peak spacing (6 Da) and without chromatographic discrimination or modification in fragmentation behavior, are used to modify carboxylic and amino groups at the protein level, resulting in an identical peptide bond-linked benzoyl modification for both reactions. The ANIBAL chemistry is simple and straightforward and is the first method that uses a (13)C-reagent for a general stable isotope labeling approach of carboxylic groups. In silico as well as in vitro analyses clearly revealed the increase in available quantifiable information using such a twin approach. ANIBAL was validated by means of model peptides and proteins with regard to the quality of the chemistry as well as the ionization behavior of the derivatized peptides. A milk fraction was used for dynamic range assessment of protein quantification, and a bacterial lysate was used for the evaluation of relative protein quantification in a complex sample in two different biological states

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatic and extrahepatic insulin sensitivity was assessed in six healthy humans from the insulin infusion required to maintain an 8 mmol/l glucose concentration during hyperglycemic pancreatic clamp with or without infusion of 16.7 micromol. kg(-1). min(-1) fructose. Glucose rate of disappearance (GR(d)), net endogenous glucose production (NEGP), total glucose output (TGO), and glucose cycling (GC) were measured with [6,6-(2)H(2)]- and [2-(2)H(1)]glucose. Hepatic glycogen synthesis was estimated from uridine diphosphoglucose (UDPG) kinetics as assessed with [1-(13)C]galactose and acetaminophen. Fructose infusion increased insulin requirements 2.3-fold to maintain blood glucose. Fructose infusion doubled UDPG turnover, but there was no effect on TGO, GC, NEGP, or GR(d) under hyperglycemic pancreatic clamp protocol conditions. When insulin concentrations were matched during a second hyperglycemic pancreatic clamp protocol, fructose administration was associated with an 11.1 micromol. kg(-1). min(-1) increase in TGO, a 7.8 micromol. kg(-1). min(-1) increase in NEGP, a 2.2 micromol. kg(-1). min(-1) increase in GC, and a 7.2 micromol. kg(-1). min(-1) decrease in GR(d) (P < 0. 05). These results indicate that fructose infusion induces hepatic and extrahepatic insulin resistance in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six healthy human subjects were studied during three 75-g oral, [13C]glucose tolerance tests to assess the kinetics of dexamethasone-induced impairment of glucose tolerance. On one occasion, they received dexamethasone (4 x 0.5 mg/day) during the previous 2 days. On another occasion, they received a single dose (0. 5 mg) of dexamethasone 150 min before ingestion of the glucose load. On the third occasion, they received a placebo. Postload plasma glucose was significantly increased after both 2 days dexamethasone and single dose dexamethasone compared with control (P < 0.05). This corresponded to a 20-23% decrease in the metabolic clearance rate of glucose, whereas total glucose turnover ([6,6-2H]glucose), total (indirect calorimetry) and exogenous glucose oxidation (13CO2 production), and suppression of endogenous glucose production were unaffected by dexamethasone. Plasma insulin concentrations were increased after 2 days of dexamethasone but not after a single dose of dexamethasone. In a second set of experiments, the effect of a single dose of dexamethasone on insulin sensitivity was assessed in six healthy humans during a 2-h euglycemic hyperinsulinemic clamp. Dexamethasone did not significantly alter insulin sensitivity. It is concluded that acute administration of dexamethasone impairs oral glucose tolerance without significantly decreasing insulin sensitivity.