980 resultados para Campylobacter coli
Resumo:
SUMMARY Under stressful conditions, mutant or post-translationally modified proteins may spontaneously misfold and form toxie species, which may further assemble into a continuum of increasingly large and insoluble toxic oligomers that may further condense into less toxic, compact amyloids in the cell Intracellular accumulation of aggregated proteins is a common denominator of several neurodegenerative diseases. To cope with the cytotoxicity induced by abnormal, aggregated proteins, cells have evolved various defence mechanisms among which, the molecular chaperones Hsp70. Hsp70 (DnaK in E. coii) is an ATPase chaperone involved in many physiological processes in the cell, such as assisting de novo protein folding, dissociating native protein oligomers and serving as pulling motors in the import of polypeptides into organelles. In addition, Hsp70 chaperones can actively solubilize and reactivate stable protein aggregates, such as heat- or mutation-induced aggregates. Hsp70 requires the cooperation of two other co-chaperones: Hsp40 and NEF (Nucleotide exchange factor) to fulfil its unfolding activity. In the first experimental section of this thesis (Chapter II), we studied by biochemical analysis the in vitro interaction between recombinant human aggregated α-synuclein (a-Syn oligomers) mimicking toxic a-Syn oligomers species in PD brains, with a model Hsp70/Hsp40 chaperone system (the E. coii DnaK/DnaJ/GrpE). We found that chaperone-mediated unfolding of two denatured model enzymes were strongly affected by α-Syn oligomers but, remarkably, not by monomers. This in vitro observed dysfunction of the Hsp70 chaperone system resulted from the sequestration of the Hsp40 proteins by the oligomeric α-synuclein species. In the second experimental part (Chapter III), we performed in vitro biochemical analysis of the co-chaperone function of three E. coii Hsp40s proteins (DnaJ, CbpA and DjlA) in the ATP-fuelled DnaK-mediated refolding of a model DnaK chaperone substrate into its native state. Hsp40s activities were compared using dose-response approaches in two types of in vitro assays: refolding of heat-denatured G6PDH and DnaK-mediated ATPase activity. We also observed that the disaggregation efficiency of Hsp70 does not directly correlate with Hsp40 binding affinity. Besides, we found that these E. coii Hsp40s confer substrate specificity to DnaK, CbpA being more effective in the DnaK-mediated disaggregation of large G6PDH aggregates than DnaJ under certain conditions. Sensibilisées par différents stress ou mutations, certaines protéines fonctionnelles de la cellule peuvent spontanément se convertir en formes inactives, mal pliées, enrichies en feuillets bêta, et exposant des surfaces hydrophobes favorisant l'agrégation. Cherchant à se stabiliser, les surfaces hydrophobes peuvent s'associer aux régions hydrophobes d'autres protéines mal pliées, formant des agrégats protéiques stables: les amyloïdes. Le dépôt intracellulaire de protéines agrégées est un dénominateur commun à de nombreuses maladies neurodégénératives. Afin de contrer la cytotoxicité induite par les protéines agrégées, les cellules ont développé plusieurs mécanismes de défense, parmi lesquels, les chaperonnes moléculaires Hsp70. Hsp70 nécessite la collaboration de deux autres co-chaperonnes : Hsp40 et NEF pour accomplir son activité de désagrégation. Hsp70 (DnaK, chez E. coli) est impliquée par ailleurs dans d'autres fonctions physiologiques telles que l'assistanat de protéines néosynthétisées à la sortie du ribosome, ou le transport transmembranaire de polypeptides. Par ailleurs, les chaperonnes Hsp70 peuvent également solubiliser et réactiver des protéines agrégées à la suite d'un stress ou d'une mutation. Dans la première partie expérimentale de cette thèse (Chapter II), nous avons étudié in vitro l'interaction entre les oligomères d'a-synucleine, responsables entre autres, de la maladie de Parkinson, et le système chaperon Hsp70/Hsp40 (système Escherichia coli DnaK/DnaJ/GrpE). Nous avons démontré que contrairement aux monomères, les oligomères d'a-synucleine inhibaient le système chaperon lors du repliement de protéines agrégées. Cette dysfonction du système chaperon résulte de la séquestration des chaperonnes Hsp40 par les oligomères d'a-synucleine. La deuxième partie expérimentale (Chapitre III) est consacrée à une étude in vitro de la fonction co-chaperonne de trois Hsp40 d'is. coli (DnaJ, CbpA, et DjlA) lors de la désagrégation par DnaK d'une protéine pré-agrégée. Leurs activités ont été comparées par le biais d'une approche dose-réponse au niveau de deux analyses enzymatiques: le repliement de la protéine agrégée et l'activité ATPase de DnaK. Par ailleurs, nous avons mis en évidence que l'efficacité de désagrégation d'Hsp70 et l'affinité des chaperonnes Hsp40 vis-à-vis de leur substrat n'étaient pas corrélées positivement. Nous avons également montré que ces trois chaperonnes Hsp40 étaient directement impliquées dans la spécificité des fonctions accomplies par les chaperonnes Hsp70. En effet, DnaK en présence de CbpA assure la désagrégation de large agrégats protéiques avec une efficacité nettement plus accrue qu'en présence de DnaJ.
Resumo:
Comprend : Lettre
Resumo:
Needle-free procedures are very attractive ways to deliver vaccines because they diminish the risk of contamination and may reduce local reactions, pain or pain fear especially in young children with a consequence of increasing the vaccination coverage for the whole population. For this purpose, the possible development of a mucosal malaria vaccine was investigated. Intranasal immunization was performed in BALB/c mice using a well-studied Plasmodium berghei model antigen derived from the circumsporozoite protein with the modified heat-labile toxin of Escherichia coli (LTK63), which is devoid of any enzymatic activity compared to the wild type form. Here, we show that intranasal administration of the two compounds activates the T and B cell immune response locally and systemically. In addition, a total protection of mice is obtained upon a challenge with live sporozoites.
Resumo:
When massively expressed in bacteria, recombinant proteins often tend to misfold and accumulate as soluble and insoluble nonfunctional aggregates. A general strategy to improve the native folding of recombinant proteins is to increase the cellular concentration of viscous organic compounds, termed osmolytes, or of molecular chaperones that can prevent aggregation and can actively scavenge and convert aggregates into natively refoldable species. In this study, metal affinity purification (immobilized metal ion affinity chromatography [IMAC]), confirmed by resistance to trypsin digestion, was used to distinguish soluble aggregates from soluble nativelike proteins. Salt-induced accumulation of osmolytes during induced protein synthesis significantly improved IMAC yields of folding-recalcitrant proteins. Yet, the highest yields were obtained with cells coexpressing plasmid-encoded molecular chaperones DnaK-DnaJ-GrpE, ClpB, GroEL-GroES, and IbpA/B. Addition of the membrane fluidizer heat shock-inducer benzyl alcohol (BA) to the bacterial medium resulted in similar high yields as with plasmid-mediated chaperone coexpression. Our results suggest that simple BA-mediated induction of endogenous chaperones can substitute for the more demanding approach of chaperone coexpression. Combined strategies of osmolyte-induced native folding with heat-, BA-, or plasmid-induced chaperone coexpression can be thought to optimize yields of natively folded recombinant proteins in bacteria, for research and biotechnological purposes.
Resumo:
Ler is a DNA-binding, oligomerizable protein that regulates pathogenicity islands in enterohemorrhagic and enteropathogenic Escherichia coli strains. Ler counteracts the transcriptional silencing effect of H-NS, another oligomerizable nucleoid-associated protein. We studied the oligomerization of Ler in the absence and presence of DNA by atomic force microscopy. Ler forms compact particles with a multimodal size distribution corresponding to multiples of 35 units of Ler. DNA wraps around Ler particles that contain more than 1516 Ler monomers. The resulting shortening of the DNA contour length is in agreement with previous measurements of the length of DNA protected by Ler in footprinting assays. We propose that the repetition unit corresponds to the number of monomers per turn of a tight helical Ler oligomer. While the repressor (H-NS) and anti-repressor (Ler) have similar DNA-binding domains, their oligomerization domains are unrelated. We suggest that the different oligomerization behavior of the two proteins explains the opposite results of their interaction with the same or proximal regions of DNA.
Resumo:
The RuvABC proteins of Escherichia coli process recombination intermediates during genetic recombination and DNA repair. RuvA and RuvB promote branch migration of Holliday junctions, a process that extends heteroduplex DNA. Together with RuvC, they form a RuvABC complex capable of Holliday junction resolution. Branch migration by RuvAB is mediated by RuvB, a hexameric ring protein that acts as an ATP-driven molecular pump. To gain insight into the mechanism of branch migration, random mutations were introduced into the ruvB gene by PCR and a collection of mutant alleles were obtained. Mutation of leucine 268 to serine resulted in a severe UV-sensitive phenotype, characteristic of a ruv defect. Here, we report a biochemical analysis of the mutant protein RuvBL268S. Unexpectedly, the purified protein is fully active in vitro with regard to its ATPase, DNA binding and DNA unwinding activities. It also promotes efficient branch migration in combination with RuvA, and forms functional RuvABC-Holliday junction resolvase complexes. These results indicate that RuvB may perform some additional, and as yet undefined, function that is necessary for cell survival after UV-irradiation.
Resumo:
Genetic recombination can lead to the formation of intermediates in which DNA molecules are linked by Holliday junctions. Movement of a junction along DNA, by a process known as branch migration, leads to heteroduplex formation, whereas resolution of a junction completes the recombination process. Holliday junctions can be resolved in either of two ways, yielding products in which there has, or has not, been an exchange of flanking markers. The ratio of these products is thought to be determined by the frequency with which the two isomeric forms (conformers) of the Holliday junction are cleaved. Recent studies with enzymes that process Holliday junctions in Escherichia coli, the RuvABC proteins, however, indicate that protein binding causes the junction to adopt an open square-planar configuration. Within such a structure, DNA isomerization can have little role in determining the orientation of resolution. To determine the role that junction-specific protein assembly has in determining resolution bias, a defined in vitro system was developed in which we were able to direct the assembly of the RuvABC resolvasome. We found that the bias toward resolution in one orientation or the other was determined simply by the way in which the Ruv proteins were positioned on the junction. Additionally, we provide evidence that supports current models on RuvABC action in which Holliday junction resolution occurs as the resolvasome promotes branch migration.
Resumo:
The RuvB protein is induced in Escherichia coli as part of the SOS response to DNA damage. It is required for genetic recombination and the postreplication repair of DNA. In vitro, the RuvB protein promotes the branch migration of Holliday junctions and has a DNA helicase activity in reactions that require ATP hydrolysis. We have used electron microscopy, image analysis, and three-dimensional reconstruction to show that the RuvB protein, in the presence of ATP, forms a dodecamer on double-stranded DNA in which two stacked hexameric rings encircle the DNA and are oriented in opposite directions with D6 symmetry. Although helicases are ubiquitous and essential for many aspects of DNA repair, replication, and transcription, three-dimensional reconstruction of a helicase has not yet been reported, to our knowledge. The structural arrangement that is seen may be common to other helicases, such as the simian virus 40 large tumor antigen.
Resumo:
Limited antimicrobial agents are available for the treatment of implant-associated infections caused by fluoroquinolone-resistant Gram-negative bacilli. We compared the activities of fosfomycin, tigecycline, colistin, and gentamicin (alone and in combination) against a CTX-M15-producing strain of Escherichia coli (Bj HDE-1) in vitro and in a foreign-body infection model. The MIC and the minimal bactericidal concentration in logarithmic phase (MBC(log)) and stationary phase (MBC(stat)) were 0.12, 0.12, and 8 μg/ml for fosfomycin, 0.25, 32, and 32 μg/ml for tigecycline, 0.25, 0.5, and 2 μg/ml for colistin, and 2, 8, and 16 μg/ml for gentamicin, respectively. In time-kill studies, colistin showed concentration-dependent activity, but regrowth occurred after 24 h. Fosfomycin demonstrated rapid bactericidal activity at the MIC, and no regrowth occurred. Synergistic activity between fosfomycin and colistin in vitro was observed, with no detectable bacterial counts after 6 h. In animal studies, fosfomycin reduced planktonic counts by 4 log(10) CFU/ml, whereas in combination with colistin, tigecycline, or gentamicin, it reduced counts by >6 log(10) CFU/ml. Fosfomycin was the only single agent which was able to eradicate E. coli biofilms (cure rate, 17% of implanted, infected cages). In combination, colistin plus tigecycline (50%) and fosfomycin plus gentamicin (42%) cured significantly more infected cages than colistin plus gentamicin (33%) or fosfomycin plus tigecycline (25%) (P < 0.05). The combination of fosfomycin plus colistin showed the highest cure rate (67%), which was significantly better than that of fosfomycin alone (P < 0.05). In conclusion, the combination of fosfomycin plus colistin is a promising treatment option for implant-associated infections caused by fluoroquinolone-resistant Gram-negative bacilli.
Resumo:
A total of 49 wastewater samples from 23 different wastewater treatment plants (WWTPs) were analyzed using real-time quantitative polymerase chain reaction for the presence and quantity of thermotolerant campylobacters. Thermotolerant campylobacters were detected in 87.5% (21/24) and 64% (16/25) of untreated and treated wastewater samples, respectively. Their concentration was sufficiently high to be quantified in 20.4% (10/49) of the samples. In these samples, the concentration ranged from 68 000 to 2292 000 cells/L in untreated wastewater and from 10 800 to 28 000 cells/L in treated water. We conclude that thermotolerant campylobacters present a health hazard for workers at WWTPs in Switzerland. [Authors]
Resumo:
The anaerobic transcriptional regulator ANR induces the arginine deiminase and denitrification pathways in Pseudomonas aeruginosa during oxygen limitation. The homologous activator FNR of Escherichia coli, when introduced into an anr mutant of P. aeruginosa, could functionally replace ANR for anaerobic growth on nitrate but not for anaerobic induction of arginine deiminase. In an FNR-positive E. coli strain, the ANR-dependent promoter of the arcDABC operon, which encodes the enzymes of the arginine deiminase pathway, was not expressed. To analyse systematically these distinct induction patterns, a lacZ promoter-probe, broad-host-range plasmid containing various -40 regions (the ANR/FNR recognition sequences) and -10 promoter sequences was constructed. These constructs were tested in P. aeruginosa and in E. coli expressing either ANR or FNR. In conjunction with the consensus -10 hexamer of E. coli sigma 70 RNA polymerase (TATAAT), the consensus FNR site (TTGAT ..... ATCAA) was recognized efficiently by ANR and FNR in both hosts. By contrast, when promoters contained the Arc box (TTGAC .... ATCAG), which is found in the arcDABC promoter, or a symmetrical mutant FNR site (CTGAT .... ATCAG), ANR was a more effective activator than was FNR. Conversely, an extended 22 bp, fully symmetrical FNR site allowed better activation with FNR than with ANR. Combination of the arc promoter -10 sequence (CCTAAT) with the Arc box or the consensus FNR site resulted in good ANR-dependent expression in P. aeruginosa but gave practically no expression in E. coli, suggesting that RNA polymerase of P. aeruginosa differs from the E. coli enzyme in -10 recognition specificity. In conclusion, ANR and FNR are able to activate the RNA polymerases of P. aeruginosa and E. coli when the -40 and -10 promoter elements ae identical or close to the E. coli consensus sequences.
Resumo:
In this review we highlight recent work that has increased our understanding of the distribution of Shiga toxin-converting phages that can be detected as free phage particles, independently of Shiga toxin-producing bacteria (STEC). Stx phages are a quite diverse group of temperate phages that can be found in their prophage state inserted within the STEC chromosome, but can also be found as phages released from the cell after activation of their lytic cycle. They have been detected in extraintestinal environments such as water polluted with feces from humans or animals, food samples or even in stool samples of healthy individuals. The high persistence of phages to several inactivation conditions makes them suitable candidates for the successful mobilization of stx genes, possibly resulting in the genes reaching a new bacterial genomic background by means of transduction, where ultimately they may be expressed, leading to Stx production. Besides the obvious fact that Stx phages circulating between bacteria can be, and probably are, involved in the emergence of new STEC strains, we review here other possible ways in which free Stx phages could interfere with the detection of STEC in a given sample by current laboratory methods and how to avoid such interference.
Resumo:
Bacterial bioreporters have substantial potential for contaminant assessment but their real world application is currently impaired by a lack of sensitivity. Here, we exploit the bioconcentration of chemicals in the urine of animals to facilitate pollutant detection. The shore crab Carcinus maenas was exposed to the organic contaminant 2-hydroxybiphenyl, and urine was screened using an Escherichia coli-based luciferase gene (luxAB) reporter assay specific to this compound. Bioassay measurements differentiated between the original contaminant and its metabolites, quantifying bioconcentration factors of up to one hundred-fold in crab urine. Our results reveal the substantial potential of using bacterial bioreporter assays in real-time monitoring of biological matricesto determine exposure histories, with wide ranging potential for the in situ measurement of xenobiotics in risk assessments and epidemiology.
Resumo:
The synthesis of a membrane-bound MalE ,B-galactosidase hybrid protein, when induced by growth of Escherichia coli on maltose, leads to inhibition of cell division and eventually a reduced rate of mass increase. In addition, the relative rate of synthesis of outer membrane proteins, but not that of inner membrane proteins, was reduced by about 50%o. Kinetic experiments demonstrated that this reduction coincided with the period of maximum synthesis of the hybrid protein (and another maltose-inducible protein, LamB). The accumulation of this abnormal protein in the envelope therefore appeared specifically to inhibit the synthesis, the assembly of outer membrane proteins, or both, indicating that the hybrid protein blocks some export site or causes the sequestration of some limiting factor(s) involved in the export process. Since the MalE protein is normally located in the periplasm, the results also suggest that the synthesis of periplasmic and outer membrane proteins may involve some steps in common. The reduced rate of synthesis of outer membrane proteins was also accompanied by the accumulation in the envelope of at least one outer membrane protein and at least two inner membrane proteins as higher-molecular-weight forms, indicating that processing (removal of the N-terminal signal sequence) was also disrupted by the presence of the hybrid protein. These results may indicate that the assembly of these membrane proteins is blocked at a relatively late step rather than at the level of primary recognition of some site by the signal sequence. In addition, the results suggest that some step common to the biogenesis of quite different kinds of envelope protein is blocked by the presence of the hybrid protein.