971 resultados para CYTOPLASMIC INCOMPATIBILITY
Resumo:
The GH receptor (GHR) is essential for normal postnatal growth and development, and the molecular basis of GHR action has been studied intensively. Clinical case studies and more recently mouse models have revealed the extensive phenotype of impaired GH action. We recently reported two new mouse models, possessing cytoplasmic truncations at position 569 (plus Y539/545-F) and 391, which were created to identify functional subdomains within the cytoplasmic signaling domain. In the homozygous state, these animals show progressively impaired postnatal growth coupled with complex changes in gene expression. We describe here an extended phenotype analysis encompassing the heterozygote state to identify whether single copies of these mutant receptors bring about partial or dominant-negative phenotypes. It appears that the retention of the ubiquitin-dependent endocytosis motif the N-terminal cytoplasmic domain permits turnover of these mutant receptors because no dominant-negative phenotype is seen. Nonetheless, we do observe partial impairment of postnatal growth in heterozygotes supporting limited haploinsufficiency. Reproductive function is impaired in these models in a progressive manner, in parallel with loss of signal transducer and activator of transcription-5 activation ability. In summary, we describe a more comprehensive phenotypic analysis of these mouse models, encompassing overall and longitudinal body growth, reproductive function, and hormonal status in both the heterozygote and homozygote state. Our results suggest that patients expressing single copies of similarly mutated GHRs would not display an obvious clinical phenotype.
Resumo:
The prostate-specific antigen-related serine protease gene, kallikrein 4 (KLK4), is expressed in the prostate and, more importantly, overexpressed in prostate cancer. Several KLK4 mRNA splice variants have been reported, but it is still not clear which of these is most relevant to prostate cancer. Here we report that, in addition to the full-length KLK4 (KLK4-254) transcript, the exon 1 deleted KLK4 transcripts, in particular, the 5'-truncated KLK4-205 transcript, is expressed in prostate cancer. Using V5/His6 and green fluorescent protein (GFP) carboxy terminal tagged expression constructs and immunocytochemical approaches, we found that hK4-254 is cytoplasmically localized, while the N-terminal truncated hK4-205 is in the nucleus of transfected PC-3 prostate cancer cells. At the protein level, using anti-hK4 peptide antibodies specific to different regions of hK4-254 (N-terminal and C-terminal), we also demonstrated that endogenous hK4-254 (detected with the N-terminal antibody) is more intensely stained in malignant cells than in benign prostate cells, and is secreted into seminal fluid. In contrast, for the endogenous nuclear-localized N-terminal truncated hK4-205 form, there was less difference in staining intensity between benign and cancer glands. Thus, KLK4-254/hK4-254 may have utility as an immunohistochemical marker for prostate cancer. Our studies also indicate that the expression levels of the truncated KLK4 transcripts, but not KLK4-254, are regulated by androgens in LNCaP cells. Thus, these data demonstrate that there are two major isoforms of hK4 (KLK4-254/hK4-254 and KLK4-205/hK4-205) expressed in prostate cancer with different regulatory and expression profiles that imply both secreted and novel nuclear roles.
Resumo:
A common feature associated with the replication of most RNA viruses is the formation of a unique membrane environment encapsulating the viral replication complex. For their part, flaviviruses are no exception, whereupon infection causes a dramatic rearrangement and induction of unique membrane structures within the cytoplasm of infected cells. These virus-induced membranes, termed paracrystalline arrays, convoluted membranes, and vesicle packets, all appear to have specific functions during replication and are derived from different organelles within the host cell. The aim of this study was to identify which protein(s) specified by the Australian strain of West Nile virus, Kunjin virus (KUNV), are responsible for the dramatic membrane alterations observed during infection. Thus, we have shown using immunolabeling of ultrathin cryosections of transfected cells that expression of the KUNV polyprotein intermediates NS4A-4B and NS213-34A, as well as that of individual NS4A proteins with and without the C-terminal transmembrane domain 2K, resulted in different degrees of rearrangement of cytoplasmic membranes. The formation of the membrane structures characteristic for virus infection required coexpression of an NS4A-NS4B cassette with the viral protease NS2B-3pro which was shown to be essential for the release of the individual NS4A and NS4B proteins. Individual expression of NS4A protein retaining the C-terminal transmembrane domain 2K resulted in the induction of membrane rearrangements most resembling virus-induced structures, while removal of the 2K domain led to a less profound membrane rearrangement but resulted in the redistribution of the NS4A protein to the Golgi apparatus. The results show that cleavage of the KUNV polyprotein NS4A-4B by the viral protease is the key initiation event in the induction of membrane rearrangement and that the NS4A protein intermediate containing the uncleaved C-terminal transmembrane domain plays an essential role in these membrane rearrangements.
Resumo:
The MFG test is a family-based association test that detects genetic effects contributing to disease in offspring, including offspring allelic effects, maternal allelic effects and MFG incompatibility effects. Like many other family-based association tests, it assumes that the offspring survival and the offspring-parent genotypes are conditionally independent provided the offspring is affected. However, when the putative disease-increasing locus can affect another competing phenotype, for example, offspring viability, the conditional independence assumption fails and these tests could lead to incorrect conclusions regarding the role of the gene in disease. We propose the v-MFG test to adjust for the genetic effects on one phenotype, e.g., viability, when testing the effects of that locus on another phenotype, e.g., disease. Using genotype data from nuclear families containing parents and at least one affected offspring, the v-MFG test models the distribution of family genotypes conditional on offspring phenotypes. It simultaneously estimates genetic effects on two phenotypes, viability and disease. Simulations show that the v-MFG test produces accurate genetic effect estimates on disease as well as on viability under several different scenarios. It generates accurate type-I error rates and provides adequate power with moderate sample sizes to detect genetic effects on disease risk when viability is reduced. We demonstrate the v-MFG test with HLA-DRB1 data from study participants with rheumatoid arthritis (RA) and their parents, we show that the v-MFG test successfully detects an MFG incompatibility effect on RA while simultaneously adjusting for a possible viability loss.
Resumo:
This study tested three hypotheses: (1) that there is clustering of the neuronal cytoplasmic inclusions (NCI), astrocytic plaques (AP) and ballooned neurons (BN) in corticobasal degeneration (CBD), (2) that the clusters of NCI and BN are not spatially correlated, and (3) that the lesions are correlated with disease ‘stage’. In 50% of the regions, clusters of lesions were 400–800 µm in diameter and regularly distributed parallel to the tissue boundary. Clusters of NCI and BN were larger in laminae II/III and V/VI, respectively. In a third of regions, the clusters of BN and NCI were negatively spatially correlated. Cluster size of the BN in the parahippocampal gyrus (PHG) was positively correlated with disease ‘stage’. The data suggest the following: (1) degeneration of the cortico-cortical pathways in CBD, (2) clusters of NCI and BN may affect different anatomical pathways and (3) BN may develop after the NCI in the PHG.
Resumo:
In cases of multiple system atrophy (MSA), glial cytoplasmic inclusions (GCI) were distributed randomly or present in large diffuse clusters (>1,600 μm in diameter) in most areas studied. These spatial patterns contrast with those reported for filamentous neuronal inclusions in the tauopathies and α-synucleinopathies. © 2003 Movement Disorder Society.
Resumo:
Tau positive neuronal cytoplasmic inclusions (NCI) are the ‘hallmark’ pathological feature of several neurodegenerative diseases collectively known as the tauopathies. This study compared the spatial patterns of various types of NCI in selected tauopathies including the neurofibrillary tangles (NFT) in Alzheimer's disease (AD) and progressive supranuclear palsy (PSP), Pick bodies (PB) in Pick’s disease (PiD), and the tau positive (tau+) neurons in corticobasal degeneration (CBD). In the cerebral cortex of these disorders, the tau+ NCI were distributed in clusters and in a significant proportion of analyses, the clusters were distributed with a regular periodicity parallel to the pia mater. The inclusions in AD, PiD and CBD exhibited a similar range of spatial patterns but in PSP were less frequently clustered and more frequently randomly distributed. In gyri where the NCI were clustered, there was a significant difference in mean cluster size between disorders. Hence, clusters of NFT in AD were larger than those in PSP and the tau+ neurons in CBD and clusters of PB in PiD were larger than the tau+ neurons in CBD and the NFT in PSP. The cluster size of the tau+ neurons in CBD was similar to the NFT in PSP. The data suggest that the formation of clusters of NCI, regularly distributed parallel to the pia mater, is a common feature of the tauopathies indicating similar patterns of cortical degeneration and pathogenic mechanisms across different diseases. Furthermore, the data suggest that cortical degeneration affecting the short and long cortico-cortical pathways may be a characteristic of the tauopathies.
Resumo:
Neuronal intermediate filament inclusion disease (NIFID), a rare form of frontotemporal lobar degeneration (FTLD), is characterized neuropathologically by focal atrophy of the frontal and temporal lobes, neuronal loss, gliosis, and neuronal cytoplasmic inclusions (NCI) containing epitopes of ubiquitin and neuronal intermediate filament (IF) proteins. Recently, the 'fused in sarcoma' (FUS) protein (encoded by the FUS gene) has been shown to be a component of the inclusions of NIFID. To further characterize FUS proteinopathy in NIFID, we studied the spatial patterns of the FUS-immunoreactive NCI in frontal and temporal cortex of 10 cases. In the cerebral cortex, sectors CA1/2 of the hippocampus, and the dentate gyrus (DG), the FUS-immunoreactive NCI were frequently clustered and the clusters were regularly distributed parallel to the tissue boundary. In a proportion of cortical gyri, cluster size of the NCI approximated to those of the columns of cells was associated with the cortico-cortical projections. There were no significant differences in the frequency of different types of spatial patterns with disease duration or disease stage. Clusters of NCI in the upper and lower cortex were significantly larger using FUS compared with phosphorylated, neurofilament heavy polypeptide (NEFH) or a-internexin (INA) immunohistochemistry (IHC). We concluded: (1) FUS-immunoreactive NCI exhibit similar spatial patterns to analogous inclusions in the tauopathies and synucleinopathies, (2) clusters of FUS-immunoreactive NCI are larger than those revealed by NEFH or ???, and (3) the spatial patterns of the FUS-immunoreactive NCI suggest the degeneration of the cortico-cortical projections in NIFID.
Resumo:
Neuronal cytoplasmic inclusions (NCI) immunoreactive for transactive response DNA-binding protein (TDP-43) are the pathological hallmark of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). We studied the spatial patterns of the TDP-43 immunoreactive NCI in the frontal and temporal cortex of 15 cases of FTLD-TDP. The NCI were distributed parallel to the tissue boundary predominantly in regular clusters 50-400 µm in diameter. In five cortical areas, the size of the clusters approximated to the cells of the cortico-cortical pathways. In most regions, cluster size was smaller than 400 µm. There were no significant differences in spatial patterns between familial and sporadic cases. Cluster size of the NCI was not correlated with disease duration, brain weight, Braak stage, or disease subtype. The spatial pattern of the NCI was similar to that of neuronal inclusions in other neurodegenerative diseases and may reflect a common pattern of degeneration involving the cortico-cortical projections.
Resumo:
Multidrug resistance protein MRP1 mediates the ATP-dependent efflux of many chemotherapeutic agents and organic anions. MRP1 has two nucleotide binding sites (NBSs) and three membrane spanning domains (MSDs) containing 17 transmembrane helices linked by extracellular and cytoplasmic loops (CL). Homology models suggest that CL7 (amino acids 1141-1195) is in a position where it could participate in signaling between the MSDs and NBSs during the transport process. We have individually replaced eight charged residues in CL7 with Ala, and in some cases, an amino acid with the same charge, and then investigated the effects on MRP1 expression, transport activity, and nucleotide and substrate interactions. A triple mutant in which Glu(1169), Glu(1170), and Glu(1172) were all replaced with Ala was also examined. The properties of R1173A and E1184A were comparable with those of wild-type MRP1, whereas the remaining mutants were either poorly expressed (R1166A, D1183A) or exhibited reduced transport of one or more organic anions (E1144A, D1179A, K1181A, (1169)AAQA). Same charge mutant D1183E was also not expressed, whereas expression and activity of R1166K were similar to wild-type MRP1. The moderate substrate-selective changes in transport activity displayed by mutants E1144A, D1179A, K1181A, and (1169)AAQA were accompanied by changes in orthovanadate-induced trapping of [alpha-(32)P]azidoADP by NBS2 indicating changes in ATP hydrolysis or release of ADP. In the case of E1144A, estradiol glucuronide no longer inhibited trapping of azidoADP. Together, our results demonstrate the extreme sensitivity of CL7 to mutation, consistent with its critical and complex dual role in both the proper folding and transport activity of MRP1.
Resumo:
The transactive response (TAR) DNA-binding protein of 43kDa (TDP-43) is an RNA binding protein encoded by the TARDPB gene. Abnormal aggregations of TDP-43 in neurons in the form of neuronal cytoplasmic inclusions (NCI) are the pathological hallmark of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). To investigate the role of TDP-43 in FTLD-TDP, the spatial patterns of the NCI were studied in frontal and temporal cortex of FTLD-TDP cases using a phosphorylation dependent anti-TDP-43 antibody (pTDP-43). In many regions, the NCI formed clusters and the clusters were distributed regularly parallel to the tissue boundary. In about 35% of cortical regions, cluster size of the NCI was within the size range of the modular columns of the cortex. The spatial patterns of the pTDP-immunoreactive inclusions were similar to those revealed by a phosphorylation-independent anti-TDP-43 antibody and also similar to inclusions characterized by other molecular pathologies such as tau, ?-synuclein and ‘fused in sarcoma’ (FUS). In conclusion, the data suggest degeneration of cortical and hippocampal anatomical pathways associated with accumulation of cellular pTDP-43 is characteristic of FTLD-TDP. In addition, the data are consistent with the hypothesis of cell to cell transfer of pTDP-43 within the brain.