956 resultados para CU(II)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cu(II), Cd(II), Mn(II) AND Ni(II). Cellulose acetate polymeric membranes had been prepared by a procedure of two steps, combining the method of phase inversion and the technique of hydrolysis-deposition. The first step was the preparation of the membrane, and together was organomodified with tetraethylortosilicate and 3-aminopropyltrietoxysilane. Parameters that exert influence in the complexation of the metallic ion, as pH, time of complexation, metal concentration, had been studied in laboratory using tests of metal removal. The membranes had presented resistance mechanics and reactivity to cations, being able to be an alternative for the removal, daily pay-concentration or in the study of the lability of metals complexed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Herein, we report results of calculations based on density functional theory (BP86/TZVP) of a set of isatin-Schiff base copper(II) and related complexes, 1-12, that have shown significant pro-apoptotic activity toward diverse tumor cells. The interaction of the copper(II) cation with different ligands has been investigated at the same level of theory. The strength and character of the Cu(II)-L bonding was characterized by metal-ligand bond lengths, vibrational frequencies, binding energies, ligand deformation energies, and natural population analysis. The metal-ligand bonding situation was also characterized by using two complementary topological approaches, the quantum theory of atoms-in-molecules (QTAIM) and the electron localization function (ELF). The calculated electronic g-tensor and hyperfine coupling constants present significant agreement with the EPR experimental data. The calculated parameters pointed to complex 10 as the most stable among the isatin-Schiff base copper(II) species, in good agreement with experimental data that indicate this complex as the most reactive in the series. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Schiff base ligand: N,N'-bis(1-phenylethylidene)ethane-1,2-diamine (L), was derived from acetophenone and ethylenediamine by condensation and its complexes (1-5) were prepared with Pb2+, Ni2+, Co2+, Cu2+ and Cd2+ metal ions. Their structures were characterized by FAB-MS, IR spectra, elemental analyses and molar conductance. The octahedral geometry of the complexes was proposed by electronic spectra and magnetic moment data. The conductivity data showed that the complexes have non-electrolytic nature. The complexes (1-5) have higher in vitro antimicrobial activity than the Schiff base ligand (L). In the nuclease activity, the complexes cleave DNA as compared to control DNA in the presence of H2O2.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is an increasing demand for novel metal-based complexes with biologically relevant molecules in technology and medicine. Three new Cu(II) coordination compounds with antifungal agent isoconazole (L), namely mononuclear complexes CuCl2(L)(2) (1), and Cu(O2CMe)(2)(L)(2)center dot 2H(2)O (2) and coordination polymer Cu(pht)(L)(2)(n) (3) (where H(2)pht - o-phthalic acid) were synthesized and characterized by IR spectroscopy, thermogravimetric analysis and X-ray crystallography. X-ray analysis showed that in all complexes, the isoconazole is coordinated to Cu(II) centres by a N atom of the imidazole fragment. In complex I, the square-planar environment of Cu(II) atoms is completed by two N atoms of isoconazole and two chloride ligands, whereas the Cu(II) atoms are coordinated by two N atoms from two isoconazole ligands and two O atoms from the different carboxylate residues: acetate in 2 and phthalate in 3. The formation of an infinite chain through the bridging phthalate ligand is observed in 3. The biosynthetic ability of micromycetes Aspergillus niger CNMN FD 10 in the presence of the prepared complexes 1-3 as well as the antifungal drug isoconazole were studied. Complexes 2 and 3 accelerate the biosynthesis of enzymes (beta-glucosidase, xylanase and endoglucanase) by this fungus. Moreover, a simplified and improved method for the preparation of isoconazole nitrate was developed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

New coordination polymers [M(Pht)(4-MeIm)2(H2O)]n (M=Co (1), Cu (2); Pht2−=dianion of o-phthalic acid; 4-MeIm=4-methylimidazole) have been synthesized and characterized by IR spectroscopy, X-ray crystallography, thermogravimetric analysis and magnetic measurements. The crystal structures of 1 and 2 are isostructural and consist of [M(4-MeIm)2(H2O)] building units linked in infinite 1D helical chains by 1,6-bridging phthalate ions which also act as chelating ligands through two O atoms from one carboxylate group in the case of 1. In complex 1, each Co(II) atom adopts a distorted octahedral N2O4 geometry being coordinated by two N atoms from two 4-MeIm, three O atoms of two phthalate residues and one O atom of a water molecule, whereas the square-pyramidal N2O3 coordination of the Cu(II) atom in 2 includes two N atoms of N-containing ligands, two O atoms of two carboxylate groups from different Pht, and a water molecule. An additional strong O–H⋯O hydrogen bond between a carboxylate group of the phthalate ligand and a coordinated water molecule join the 1D helical chains to form a 2D network in both compounds. The thermal dependences of the magnetic susceptibilities of the polymeric helical Co(II) chain compound 1 were simulated within the temperature range 20–300 K as a single ion case, whereas for the Cu(II) compound 2, the simulations between 25 and 300 K, were made for a linear chain using the Bonner–Fisher approximation. Modelling the experimental data of compound 1 with MAGPACK resulted in: g=2.6, |D|=62 cm−1. Calculations using the Bonner–Fisher approximation gave the following result for compound 2: g=2.18, J=–0.4 cm−1.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes the syntheses and characterization of two new copper(II) diphosphonates: [NH3(CH2)2NH3]2[Cu2(hedp)2]·H2O (1) and [NH3CH(CH3)CH2NH3]2[Cu2(hedp)2] (2) (hedp = 1-hydroxyethylidenediphosphonate). Both compounds exhibit similar one-dimensional linear chain structures. The symmetrical {Cu2(hedp)2} dimers are connected by edge-shared {CuO5} square pyramids and form infinite chains. The Cu(II) ions are alternately bridged by O–P–O groups and O atoms. The Cu–O–Cu angles are 95.8(1) and 96.1(1)° for 1 and 2, respectively. Their magnetic properties show moderately strong antiferromagnetic interactions in both compounds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

New mixed-ligand copper(II) complexes of empirical formulas [Cu(pysme)(sac) (CH3OH)] and [Cu(6mptsc)(sac)](2) have been synthesized and characterized by conductance, magnetic, IR and electronic spectroscopic techniques. X-ray crystallographic structure analyses of these complexes indicate that in both complexes the copper(II) ions adopt a five-coordinate distorted square-pyramidal geometry with an N3SO donor environment. The Schiff bases are coordinated to the copper(II) ions as tridentate NNS chelates via the pyridine nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom. In the monomeric [Cu(pysme)(sac)(MeOH)] complex, the saccharinate anion acts as a monodentate ligand coordinating the copper(II) ion via the imino nitrogen atom whereas in the dimeric [Cu(6mptsc)(sac)](2) complex, the sac anion behaves as a bridging bidentate ligand providing the imino nitrogen donor atom to one of the copper(II) ions and the carbonyl oxygen as a weakly coordinated axial ligand atom to the other Cu(II) ion. In both complexes, the copper(II) ions have distorted square-pyramidal environments. The distortion from an ideal square-pyramidal geometry is attributed to the restricted bite angles of the planar tridentate ligand. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

New copper(II) complexes of general empirical formula, Cu(mpsme)X center dot xCH(3)COCH(3) (mpsme = anionic form of the 6-methyl-2-formylpyridine Schiff base of S-methyldithiocarbazate; X = Cl, N-3, NCS, NO3; x = 0, 0.5) have been synthesized and characterized by IR, electronic, EPR and susceptibility measurements. Room temperature mu(eff) values for the complexes are in the range 1.75-2.1 mu(beta) typical of uncoupled or weakly coupled Cu(II) centres. The EPR spectra of the [Cu(mpsme)X] (X = Cl, N-3, NO3, NCS) complexes reveal a tetragonally distorted coordination sphere around the mononuclear Cu(II) centre. We have exploited second derivative EPR spectra in conjunction with Fourier filtering (sine bell and Hamming functions) to extract all of the nitrogen hyperfine coupling matrices. While the X-ray crystallography of [Cu(mpsme)NCS] reveals a linear polymer in which the thiocyanate anion bridges the two copper(II) ions, the EPR spectra in solution are typical of a magnetically isolated monomeric Cu(II) centres indicating dissociation of the polymeric chain in solution. The structures of the free ligand, Hmpsme and the {[Cu(mpsme)NO3] center dot 0.5CH(3)COCH(3)}(2) and [Cu(mpsme)NCS](n) complexes have been determined by X-ray diffraction. The {[Cu(mpsme)NO3]0.5CH(3)COCH(3)}(2) complex is a centrosymmetric dimer in which each copper atom adopts a five-coordinate distorted square-pyramidal geometry with an N2OS2 coordination environment, the Schiff base coordinating as a uninegatively charged tridentate ligand chelating through the pyridine and azomethine nitrogen atoms and the thiolate, an oxygen atom of a unidentate nitrato ligand and a bridging sulfur atom from the second ligand completing the coordination sphere. The [Cu(mpsme)(NCS)](n) complex has a novel staircase-like one dimensional polymeric structure in which the NCS- ligands bridge two adjacent copper(II) ions asymmetrically in an end-to-end fashion providing its nitrogen atom to one copper and the sulfur atom to the other. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mycophenolic acid (MPA) is a drug that has found widespread use as an immunosuppressive agent which limits rejection of transplanted organs. Optimal use of this drug is hampered by gastrointestinal side effects which can range in severity. One mechanism by which MPA causes gastropathy may involve a direct interaction between the drug and gastric phospholipids. To combat this interaction we have investigated the potential of MPA to coordinate Cu(II), a metal which has been used to inhibit gastropathy associated with use of the NSAID indomethacin. Using a range of spectroscopic techniques we show that Cu(II) is coordinated to two MPA molecules via carboxylates and, at low pH, water ligands. The copper complex formed is stable in solution as assessed by mass spectrometry and H-1 NMR diffusion experiments. Competition studies with glycine and albumin indicate that the copper-MPA complex will release Cu(II) to amino acids and proteins thereby allowing free MPA to be transported to its site of action. Transfer to serum albumin proceeds via a Cu(MPA)(albumin) ternary complex. These results raise the possibility that copper complexes of MPA may be useful in a therapeutic situation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The O–O–N–N–O-type pentadentate ligands H3ed3a, H3pd3a and H3pd3p (H3ed3a stands ethylenediamine-N,N,N′-triacetic acid; H3pd3a stands 1,3-propanediamine-N,N,N′-triacetic acid and H3pd3p stands 1,3-propanediamine-N,N,N′-tri-3-propionic acid) and the corresponding novel octahedral or square-planar/trigonal-bipyramidal copper(II) complexes have been prepared and characterized. H3ed3a, H3pd3a and H3pd3p ligands coordinate to copper(II) ion via five donor atoms (three deprotonated carboxylate atoms and two amine nitrogens) affording octahedral in case of ed3a3− and intermediate square-pyramidal/trigonal-bipyramidal structure in case of pd3a3− and pd3p3−. A six coordinate, octahedral geometry has been established crystallographically for the [Mg(H2O)6][Cu(ed3a)(H2O)]2 · 2H2O complex and five coordinate square-pyramidal for the [Mg(H2O)5Cu(pd3a)][Cu(pd3a)] · 2H2O. Structural data correlating similar chelate Cu(II) complexes have been used for the better understanding the pathway: octahedral → square-pyramidal ↔ trigonal- bipyramid geometry. An extensive configuration analysis is discussed in relation to information obtained for similar complexes. The infra-red and electronic absorption spectra of the complexes are discussed in comparison with related complexes of known geometries. Molecular mechanics and density functional theory (DFT) programs have been used to model the most stable geometric isomer yielding, at the same time, significant structural data. The results from density functional studies have been compared with X-ray data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The synthesis and crystal structure of a novel one-dimensional Cu(II) compound [Cu(1,2-bis(tetrazol-1-yl)ethane)3](ClO4)2 are described. The single-crystal X-ray structure determination was carried out at 298 K. The molecular structure consists of a linear chain in which the Cu(II) ions are linked by three N4,N4' coordinating bis(tetrazole) ligands in syn conformation. The Cu(II) ions are in a Jahn-Teller distorted octahedral environment (Cu(1)-N(11)=2.034(2) Å, Cu(1)-N(21)=2.041(2) Å and Cu(1)-N(31)=2.391(2) Å). The Cu⋯Cu separations are 7.420(3) Å.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optical absorption and EPR studies of the mineral tenorite, a cupric oxide, which originated from Mexico and contains 54.40 wt% of CuO. EPR spectral results indicate two Cu(II) closely interacting ions to give a d2 type structure. The calculated spin Hamiltonian at Rt and LNT are g = 2.160 and D = 125 G . The intensity of resonance line is not the same in low and high field regions. The optical absorption spectrum is due to Cu(II) which three sets of energies indicating Cu(II) in two independent tetragonal C4v symmetry, in addition to d2 structure of octahedral coordination. The octahedral and tetragonal field parameters are compared with those reported for several other copper containing minerals.