946 resultados para CROPPING SYSTEMS
Resumo:
Organic carbon is a major component of soil organic matter and its stock is influenced by the management system adopted. This study aimed to examine the effects of cropping systems and nutrient sources (mineral and organic) on the concentrations and storage of soil organic carbon in no-tillage system. The experiment was carried out in Mercedes, Parana, Brazil, in an Nitossolo Vermelho (Alfisol) from October 2007 to September 2009. The treatments consisted of four crop succession systems: (1) soybean/wheat/corn/wheat; (2) soybean/black oat/corn/black oat, (3) soybean/radish/corn/radish and (4) soybean/common vetch/corn/common vetch and by two sources of nutrients (mineral and organic), arranged in a to split plot randomized block design with four replications. Soil samples were collected in layers of 0.0-0.05, 0.05-0.10, 0.10-0.20 and 0.20 to 0.40 m deep in the first and the second years of cultivation. Different cropping systems does not affect the content and the stock of soil organic carbon in the first two years of adoption of the systems. The organic fertilization with manure increased soil organic carbon stock, with an annual contribution of C, layer 0.0 to 0.20 m, 1.15 Mg ha(-1) yr(-1). Cropping systems fertilized with mineral fertilizers provide the greatest losses of soil organic carbon, resulting in negative balance of C in soil.
Resumo:
The objective of this study was to evaluate the production cost and profitability of the second season corn crop in the Medio Paranapanema region, São Paulo State Brazil, under two technological levels (middle and high technology), crop 2008/2009, and compare the results with the 2006/2007 agricultural year. Effective and total operational cost as well as five profitability indicators were used. It was concluded that the high technology production cost for corn crop (direct seedling, sowing during the recommended period, use of simple hybrid seed, application of side-dressing fertilization, and treatment of seeds with different insecticides) was superior to the middle technology production cost (direct seedling, sowing after the recommended time, use of double hybrid seed, and no side-dressing fertilization). However, the average cost was inferior (US$ 8.5), due to a higher yield (4 t). The high technology corn crop was profitable (gross income and profitability index of 14% and 12%, respectively). For the middle technology crop, profitability indexes pointed out that the cropping system needs to be reevaluated by technicians and research institutions, regarding the adequate technical recommendations. Profitability indexes decreased considerably in both cropping systems. It was verified that, in relation to the 2006/2007 harvest period, the total operational cost increased for both technologies, mainly because of the increase of supplies prices.
Resumo:
The aim of this work is to describe the behavior of coffee (Coffea arabica L.) grown for nine years under organic management systems in full sun and shaded by banana trees (Musa sp.) and Erythrina verna Vell., in Valença, RJ. We performed a joint evaluation of vegetative characteristics, nutritional content and yield, with the aid of a principal component analysis. Twelve treatments were arranged in a randomized block design with four replications in a split plot. The plots evaluated farming systems in full sun and shade, and the subplots consisted of the following varieties of coffee: Tupi IAC 1669-33, MG 6851, IAC 3282 Icatu, Catucaí 2SL, Obatã IAC 1669-20; lineage IAC IAC 144. After five years we assessed the following variables, height, stem and canopy diameter, leaf area, number of branches, number of nodes per branch, number of leaves present, the distance between nodes, the percentage of green,ripe and dried fruit, number of dead plants, number of plants with death of the apical bud, coffee yield, and foliar concentrations of N, P, K, Ca and Mg. A multivariate analysis efficiently discriminates the variables in full sun and shaded cropping systems. Shading increases the percentage of green fruit, leaf area, height, diameter, distance between nodes, number of leaves on the branches, number of branches and leaf N content, but does not reduce the level of productivity when the shade is adequate.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The high demand of pesticides in the production systems makes the application technology one of the main alternatives to optimize the products efficiency. In this context, the study aimed to evaluate the effects of spray nozzles and spray volumes on spraying deposits, armyworm control and crop corn performance in narrow row sowing system. The experiment was carried out at experimental area of Sao Paulo State University, Campus of Botucatu/SP, Brazil, during the 2009/2010 agricultural season, in randomized blocks with factorial scheme (2x2+1) and four replications. It was tested two flat fan spray nozzles (with and without air induction) combined with two spray volumes (100 and 200 L ha-1) plus a control treatment. There was no influence of spray nozzles (without air induction) in the spray deposits levels on plants. However, the flat fan nozzle with air induction was more effective on fall armyworm, with 100% of control against 47.84% from other at 15 days after spraying. The increase in the spray volume promoted high spray deposits (415.4 and 388.6 μL g-1 dry mass for flat fan nozzle with and without air induction, respectively at V10 growth stage) and consequently, the highest spray volume (200 L-1) was more efficient in the fall armyworm suppression, with 100% of control. All the technologies tested showed lower plant injury from fall armyworm. The insecticide sprayed with different technologies did not affect the parameters of plant height and leaf area index. The corn productivity was directly related with control efficiency of fall armyworm. © 2012 Academic Journals Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The experimental unit of measurement is a suitable technique to estimate the average character in evaluation, and experimentation should be well understood and executed, because the precision characterizes the quality of the inferences of the results. This research aimed to analyze the possibility to obtaining the quantity of fruit required for sampling of lychee plants, to determining the average mass of the fruits, with less sampling error. One hundred fruits were collected, in a hectare, in two cropping systems, conventional and organic, being one fruit per plant. From the data of fruit mass was used the Excel® to calculate the average fruit mass and number of fruits samples needed to represent the area of the producer. The results show that to achieve a sampling error of 10% for determining the average mass of fruit, 400 fruits should be collected for organic system and 370 for the conventional, while for 20% sampling error, it is necessary to collect 250 fruits per hectare in organic system and 220 in the conventional.
Resumo:
A better understanding of the differential growth of upland rice (Oryza sativa L.) cultivars with increasing soil S availability could help improve rice yield under upland conditions. The objective of this study was to evaluate root and shoot growth and nutrition of upland traditional and modern rice cultivars as affected by S availability. The experimental design was completely randomized in a 3 (rates of S) × 3 (cultivars) factorial with four replications. Low availability of S in the soil reduces root and shoot development and the efficiency of N, P, and S uptake, as well as the concentration and content of these nutrients in rice cultivars. At 0 mg dm-3 of S, rice cultivars prioritize root growth over shoots, and the traditional cultivar does so with greater intensity. Our results suggested that more development of traditional cultivars under low S availability facilitates its adaptation in soils under this condition. On the other hand, the intermediate and modern cultivars are more responsive to S fertilization. Moreover, S fertilization allows significant increases in upland rice growth and must be considered in cropping systems aiming for high yields. © Soil Science Society of America.
Resumo:
Nutrient use efficiency has become an important issue in agriculture, and crop rotations with deep vigorous rooted cover crops under no till may be an important tool in increasing nutrient conservation in agricultural systems. Ruzigrass (Brachiaria ruziziensis) has a vigorous, deep root system and may be effective in cycling P and K. The balance of P and K in cropping systems with crop rotations using ruzigrass, pearl millet (Pennisetum glaucum) and ruzigrass + castor bean (Ricinus communis), chiseled or not, was calculated down to 0.60 m in the soil profile for 2 years. The cash crops were corn in the first year and soybean in the second year. Crop rotations under no-till increased available P amounts in the soil-plant system from 80 to 100 %, and reduced K losses between 4 and 23 %. The benefits in nutrient balance promoted by crop rotations were higher in the second year and under without chiseling. Plant residues deposited on the soil surface in no-till systems contain considerable nutrient reserve and increase fertilizer use efficiency. However, P release from ruzigrass grown as a sole crop is not synchronized with soybean uptake rate, which may result in decreased yields. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Intercropping corn (Zea mays L.) with palisadegrass [Brachiaria brizantha (Hochst. ex A. Rich) Stapf] can result in high amounts of residue and improve nutrient cycling. Long-season corn hybrids will live longer, competing with palisadegrass, which may reduce both corn and forage biomass yields. This study, conducted in the state of São Paulo, Brazil, had the objective of evaluating nutrient concentration and yield of corn hybrids with different maturity ratings as affected by intercropped palisadegrass as well as forage dry matter production. Te experimental design was randomized blocks with a factorial arrangement of eight treatments consisting of two cropping systems (corn alone and intercropped with palisadegrass) and four corn hybrids (105-, 121-, 132, and 144-d relative maturity). Compared with corn grown alone, intercropping treatments resulted in corn grain yields of 107% (105-d hybrid) to 71.7% (144-d hybrid). In the corn-alone system, the 132- and 144-d corn hybrids provided the highest corn yields (9581 and 9606 kg ha-1, respectively). Corn yield was similar between the single-crop and intercrop systems when using 105-, 121-, and 132-d hybrids. Intercropping with the 144-d hybrid reduced forage production (6619 kg ha-1) and quality of palisadegrass (86 g kg-1 of crude protein) compared with the other hybrids. Te intercropping system with the 132-d hybrid allowed both the highest corn grain (8860 kg ha-1) and palisadegrass (8256 kg ha-1) yields. Therefore, intercropping palisadegrass with the earlier (105-, 121-, and 132-d) corn hybrids is a viable option for crop-livestock integration because it did not affect either corn or palisadegrass yield. © 2013 by the American Society of Agronomy, 5585 Guilford Road, Madison, WI 53711. All rights reserved.
Resumo:
Intercropping is a cropping system for the production of greenhouse vegetables. It uses space more efficiently, thus reducing the cost of production. Intercropping tomato and lettuce has not been studied, but knowledge of the competitive and agroeconomic indices of these vegetables can help in the management of the intercropping system. The objectives of this study were to assess, through biological and agroeconomic indices, the competition between species and the profitability of intercropping tomato and lettuce at different times of transplantation over two growing seasons (autumn-winter and summer-winter) in greenhouse conditions. In autumn-winter, two experiments were conducted with a randomised complete-block design and five replicates. Tomato and lettuce were the main crops in the individual experiments. Treatments were arranged in a factorial of two cropping systems (intercropping and individual crops) with four transplants of the secondary crop (0, 10, 20 and 30 days after) plus an additional treatment (individual main crop). These two experiments were repeated in summer-winter. Tomato was the dominant crop regardless of transplant order. Intercropping systems established with transplants of both species on the same day had higher values of indices of competition and bio-agroeconomic efficiency than systems with longer periods of transplants between main and secondary crops. The intercropping of lettuce and tomato in greenhouses, regardless of transplant time or order, had bio-agroeconomic advantages over individual crops. The transplantation of tomato after lettuce is recommended for greater profitability.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)