315 resultados para CORTICOMOTOR EXCITABILITY
Resumo:
γ-Aminobutyric acid type B receptors (GABABRs) are involved in the fine tuning of inhibitory synaptic transmission. Presynaptic GABABRs inhibit neurotransmitter release by down-regulating high-voltage activated Ca2+ channels, whereas postsynaptic GABABRs decrease neuronal excitability by activating a prominent inwardly rectifying K+ (Kir) conductance that underlies the late inhibitory postsynaptic potentials. Here we report the cloning and functional characterization of two human GABABRs, hGABABR1a (hR1a) and hGABABR1b (hR1b). These receptors closely match the pharmacological properties and molecular weights of the most abundant native GABABRs. We show that in transfected mammalian cells hR1a and hR1b can modulate heteromeric Kir3.1/3.2 and Kir3.1/3.4 channels. Heterologous expression therefore supports the notion that Kir3 channels are the postsynaptic effectors of GABABRs. Our data further demonstrate that in principle either of the cloned receptors could mediate inhibitory postsynaptic potentials. We find that in the cerebellum hR1a and hR1b transcripts are largely confined to granule and Purkinje cells, respectively. This finding supports a selective association of hR1b, and not hR1a, with postsynaptic Kir3 channels. The mapping of the GABABR1 gene to human chromosome 6p21.3, in the vicinity of a susceptibility locus (EJM1) for idiopathic generalized epilepsies, identifies a candidate gene for inherited forms of epilepsy.
Resumo:
Changes in metabolism and local circulation occur in the spinal cord during peripheral noxious stimulation. Evidence is presented that this stimulation also causes signal intensity alterations in functional magnetic resonance images of the spinal cord during formalin-induced pain. These results indicate the potential of functional magnetic resonance imaging in assessing noninvasively the extent and intensity of spinal cord excitation in this well characterized pain model. Therefore, the aim of this study was to establish functional magnetic resonance imaging as a noninvasive method to characterize temporal changes in the spinal cord after a single injection of 50 μl of formalin subcutaneously into the hindpaw of the anesthetized rat. This challenge produced a biphasic licking activity in the freely moving conscious animal. Images of the spinal cord were acquired within 2 min, enabling monitoring of the site and the temporal evolution of the signal changes during the development of formalin-induced hyperalgesia without the need of any surgical procedure. The time course of changes in the spinal cord functional image in the isoflurane-anesthetized animal was similar to that obtained from behavioral experiments. Also, comparable physiological data, control experiments, and the inhibition of a response through application of the local anesthetic agent lidocaine indicate that the signal changes observed after formalin injection were specifically related to excitability changes in the relevant segments of the lumbar spinal cord. This approach could be useful to characterize different models of pain and hyperalgesia and, more importantly, to evaluate effects of analgesic drugs.
Resumo:
We have isolated a novel cDNA, that appears to represent a new class of ion channels, by using the yeast two-hybrid system and the SH3 domain of the neural form of Src (N-src) as a bait. The encoded polypeptide, BCNG-1, is distantly related to cyclic nucleotide-gated channels and the voltage-gated channels, Eag and H-erg. BCNG-1 is expressed exclusively in the brain, as a glycosylated protein of ≈132 kDa. Immunohistochemical analysis indicates that BCNG-1 is preferentially expressed in specific subsets of neurons in the neocortex, hippocampus, and cerebellum, in particular pyramidal neurons and basket cells. Within individual neurons, the BCNG-1 protein is localized to either the dendrites or the axon terminals depending on the cell type. Southern blot analysis shows that several other BCNG-related sequences are present in the mouse genome, indicating the emergence of an entire subfamily of ion channel coding genes. These findings suggest the existence of a new type of ion channel, which is potentially able to modulate membrane excitability in the brain and could respond to regulation by cyclic nucleotides.
Resumo:
Low voltage-activated, or T-type, calcium currents are important regulators of neuronal and muscle excitability, secretion, and possibly cell growth and differentiation. The gene (or genes) coding for the pore-forming subunit of low voltage-activated channel proteins has not been unequivocally identified. We have used reverse transcription–PCR to identify partial clones from rat atrial myocytes that share high homology with a member of the E class of calcium channel genes. Antisense oligonucleotides targeting one of these partial clones (raE1) specifically block the increase in T-current density that normally results when atrial myocytes are treated with insulin-like growth factor 1 (IGF-1). Antisense oligonucleotides targeting portions of the neuronal rat α1E sequence, which are not part of the clones detected in atrial tissue, also block the IGF-1-induced increase in T-current, suggesting that the high homology to α1E seen in the partial clone may be present in the complete atrial sequence. The basal T-current expressed in these cells is also blocked by antisense oligonucleotides, which is consistent with the notion that IGF-1 up-regulates the same gene that encodes the basal current. These results support the hypothesis that a member of the E class of calcium channel genes encodes a low voltage-activated calcium channel in atrial myocytes.
Resumo:
Large conductance voltage and Ca2+-activated K+ (MaxiK) channels couple intracellular Ca2+ with cellular excitability. They are composed of a pore-forming α subunit and modulatory β subunits. The pore blockers charybdotoxin (CTx) and iberiotoxin (IbTx), at nanomolar concentrations, have been invaluable in unraveling MaxiK channel physiological role in vertebrates. However in mammalian brain, CTx-insensitive MaxiK channels have been described [Reinhart, P. H., Chung, S. & Levitan, I. B. (1989) Neuron 2, 1031–1041], but their molecular basis is unknown. Here we report a human MaxiK channel β-subunit (β4), highly expressed in brain, which renders the MaxiK channel α-subunit resistant to nanomolar concentrations of CTx and IbTx. The resistance of MaxiK channel to toxin block, a phenotype conferred by the β4 extracellular loop, results from a dramatic (≈1,000 fold) slowdown of the toxin association. However once bound, the toxin block is apparently irreversible. Thus, unusually high toxin concentrations and long exposure times are necessary to determine the role of “CTx/IbTx-insensitive” MaxiK channels formed by α + β4 subunits.
Resumo:
Several models that develop epileptiform discharges and epilepsy have been associated with a decrease in the activity of calmodulin-dependent kinase II. However, none of these studies has demonstrated a causal relationship between a decrease in calcium/calmodulin kinase II activity and the development of seizure activity. The present study was conducted to determine the effect of directly reducing calcium/calmodulin-dependent kinase activity on the development of epileptiform discharges in hippocampal neurons in culture. Complimentary oligonucleotides specific for the α subunit of the calcium/calmodulin kinase were used to decrease the expression of the enzyme. Reduction in kinase expression was confirmed by Western analysis, immunocytochemistry, and exogenous substrate phosphorylation. Increased neuronal excitability and frank epileptiform discharges were observed after a significant reduction in calmodulin kinase II expression. The epileptiform activity was a synchronous event and was not caused by random neuronal firing. Furthermore, the magnitude of decreased kinase expression correlated with the increased neuronal excitability. The data suggest that decreased calmodulin kinase II activity may play a role in epileptogenesis and the long-term plasticity changes associated with the development of pathological seizure activity and epilepsy.
Resumo:
Slow nonselective cation conductances play a central role in determining the excitability of many neurons, but heretofore this channel type has not been analyzed at the single-channel level. Neurotensin (NT) excites cultured dopaminergic neurons from the ventral tegmental area primarily by increasing such a cation conductance. Using the outside–out configuration of the patch clamp, we elicited single-channel activity of this NT-induced cation channel. Channel activity was blocked by the nonpeptide NT antagonist SR48692, indicating that the response was mediated by NT receptors. The channel opened in both solitary form and in bursts. The reversal potential was −4.2 ± 1.7 mV, and the elementary conductance was 31 pS at −67 mV with [Na+]o = 140 mM, [Cs+]o = 5 mM, [Na+]i = 88 mM, and [Cs+]i = 74 mM. Thus, the channel was permeable to both Na+ and Cs+. From these characteristics, it is likely that this channel is responsible for the whole-cell current we studied previously. In guanosine 5′-[γ-thio]triphosphate-loaded cells, NT irreversibly activated about half of the channel activity, suggesting that at least part of the response was mediated by a G protein. Similar channel activity could be induced occasionally in the cell-attached configuration by applying NT outside the patch region.
Resumo:
Short-term behavioral sensitization of the gill-withdrawal reflex after tail stimuli in Aplysia leads to an enhancement of the connections between sensory and motor neurons of this reflex. Both behavioral sensitization and enhancement of the connection between sensory and motor neurons are importantly mediated by serotonin. Serotonin activates two types of receptors in the sensory neurons, one of which is coupled to the cAMP/protein kinase A (PKA) pathway and the other to the inositol triphosphate/protein kinase C (PKC) pathway. Here we describe a genetic approach to assessing the isolated contribution of the PKA pathway to short-term facilitation. We have cloned from Aplysia an octopamine receptor gene, Ap oa1, that couples selectively to the cAMP/PKA pathway. We have ectopically expressed this receptor in Aplysia sensory neurons of the pleural ganglia, where it is not normally expressed. Activation of this receptor by octopamine stimulates all four presynaptic events involved in short-term synaptic facilitation that are normally produced by serotonin: (i) membrane depolarization; (ii) increased membrane excitability; (iii) increased spike duration; and (iv) presynaptic facilitation. These results indicate that the cAMP/PKA pathway alone is sufficient to produce all the features of presynaptic facilitation.
Resumo:
Reactive oxygen species (ROS) and nitric oxide (NO) are important participants in signal transduction that could provide the cellular basis for activity-dependent regulation of neuronal excitability. In young rat cortical brain slices and undifferentiated PC12 cells, paired application of depolarization/agonist stimulation and oxidation induces long-lasting potentiation of subsequent Ca2+ signaling that is reversed by hypoxia. This potentiation critically depends on NO production and involves cellular ROS utilization. The ability to develop the Ca2+ signal potentiation is regulated by the developmental stage of nerve tissue, decreasing markedly in adult rat cortical neurons and differentiated PC12 cells.
Resumo:
The nervous system maintains a delicate balance between excitation and inhibition, partly through the complex interplay between voltage-gated sodium and potassium ion channels. Because K+ channel blockade or gene deletion causes hyperexcitability, it is generally assumed that increases in K+ channel gene expression should reduce neuronal network excitability. We have tested this hypothesis by creating a transgenic mouse that expresses a Shaker-type K+ channel gene. Paradoxically, we find that addition of the extra K+ channel gene results in a hyperexcitable rather than a hypoexcitable phenotype. The presence of the transgene leads to a complex deregulation of endogenous Shaker genes in the adult central nervous system as well as an increase in network excitability that includes spontaneous cortical spike and wave discharges and a lower threshold for epileptiform bursting in isolated hippocampal slices. These data suggest that an increase in K+ channel gene dosage leads to dysregulation of normal K+ channel gene expression, and it may underlie a mechanism contributing to the pathogenesis of human aneuploidies such as Down syndrome.
Resumo:
Members of the Src family of nonreceptor protein tyrosine kinases (PTKs) have been implicated in the regulation of cellular excitability and synaptic plasticity. We have investigated the role of these PTKs in in vitro models of epileptiform activity. Spontaneous epileptiform discharges were induced in vitro in the CA3 region of rat hippocampal slices by superfusion with the potassium channel blocker 4-aminopyridine in Mg2+-free medium. In hippocampal slices treated in this fashion, Src kinase activity was increased and the frequency of epileptiform discharges could be greatly reduced by inhibitor of the Src family of PTKs, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), but not by the inactive structural analog 4-amino-7-phenylpyrazol[3,4-d]pyrimidine (PP3). 4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine also reduced epileptiform activity induced by either 4-aminopyridine or Mg2+-free medium alone. These observations demonstrate a role for Src family PTKs in the pathophysiology of epilepsy and suggest potential therapeutic targets for antiepileptic therapy.
Resumo:
γ-Hydroxybutyrate (GHB), an anesthetic adjuvant analog of γ-aminobutyrate (GABA), depresses cell excitability in hippocampal neurons by inducing hyperpolarization through the activation of a prominent inwardly rectifying K+ (Kir3) conductance. These GABA type B (GABAB)-like effects are clearly shown at high concentrations of GHB corresponding to blood levels usually reached during anesthesia and are mimicked by the GABAB agonist baclofen. Recent studies of native GABAB receptors (GABABRs) have favored the concept that GHB is also a selective agonist. Furthermore, cloning has demonstrated that GABABRs assemble heteromeric complexes from the GABABR1 and GABABR2 subtypes and that these assemblies are activated by GHB. The surprisingly high tissue content, together with anti-ischemic and protective effects of GHB in the heart, raises the question of a possible influence of GABAB agonists on excitable cardiac cells. In the present study, we provide electrophysiological evidence that GHB activates an inwardly rectifying K+ current in rat ventricular myocytes. This effect is mimicked by baclofen, reversibly inhibited by GABAB antagonists, and prevented by pertussis toxin pretreatment. Both GABABR1 and GABABR2 are detected in cardiomyocytes by Western blotting and are shown to coimmunoprecipitate. Laser scanning confocal microscopy discloses an even distribution of the two receptors in the sarcolemma and along the transverse tubular system. Hence, we conclude that GABABRs are distributed not only in neuronal tissues but also in the heart, where they can be activated and induce electrophysiological alterations through G-protein-coupled inward rectifier potassium channels.
Resumo:
γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian brain, is synthesized by two glutamate decarboxylase isoforms, GAD65 and GAD67. The separate role of the two isoforms is unknown, but differences in saturation with cofactor and subcellular localization suggest that GAD65 may provide reserve pools of GABA for regulation of inhibitory neurotransmission. We have disrupted the gene encoding GAD65 and backcrossed the mutation into the C57BL/6 strain of mice. In contrast to GAD67−/− animals, which are born with developmental abnormalities and die shortly after birth, GAD65−/− mice appear normal at birth. Basal GABA levels and holo-GAD activity are normal, but the pyridoxal 5′ phosphate-inducible apo-enzyme reservoir is significantly decreased. GAD65−/− mice develop spontaneous seizures that result in increased mortality. Seizures can be precipitated by fear or mild stress. Seizure susceptibility is dramatically increased in GAD65−/− mice backcrossed into a second genetic background, the nonobese diabetic (NOD/LtJ) strain of mice enabling electroencephalogram analysis of the seizures. The generally higher basal brain GABA levels in this backcross are significantly decreased by the GAD65−/− mutation, suggesting that the relative contribution of GABA synthesized by GAD65 to total brain GABA levels is genetically determined. Seizure-associated c-fos-like immunoreactivity reveals the involvement of limbic regions of the brain. These data suggest that GABA synthesized by GAD65 is important in the dynamic regulation of neural network excitability, implicate at least one modifier locus in the NOD/LtJ strain, and present GAD65−/− animals as a model of epilepsy involving GABA-ergic pathways.
Resumo:
The development of functional Ca2+-activated K+ channels (KCa) in chick ciliary ganglion (CG) neurons requires interactions with afferent preganglionic nerve terminals. Here we show that the essential preganglionic differentiation factor is an isoform of β-neuregulin-1. β-Neuregulin-1 transcripts are expressed in the midbrain preganglionic Edinger–Westphal nucleus at developmental stages that coincide with or precede the normal onset of macroscopic KCa in CG neurons. Injection of β-neuregulin-1 peptide into the brains of developing embryos evoked a robust stimulation of functional KCa channels at stages before the normal appearance of these channels in CG neurons developing in vivo. Conversely, injection of a neutralizing antiserum specific for β-neuregulin-1 inhibited the development of KCa channels in CG neurons. Low concentrations of β-neuregulin-1 evoked a robust increase in whole-cell KCa in CG neurons cocultured with iris target tissues. By contrast, culturing CG neurons with iris cells or low concentrations of β-neuregulin-1 by themselves was insufficient to stimulate KCa. These data suggest that the preganglionic factor required for the development of KCa in ciliary ganglion neurons is an isoform of β-neuregulin-1, and that this factor acts in concert with target-derived trophic molecules to regulate the differentiation of excitability.
Resumo:
Although it is well established that hyperexcitability and/or increased baseline sensitivity of primary sensory neurons can lead to abnormal burst activity associated with pain, the underlying molecular mechanisms are not fully understood. Early studies demonstrated that, after injury to their axons, neurons can display changes in excitability, suggesting increased sodium channel expression, and, in fact, abnormal sodium channel accumulation has been observed at the tips of injured axons. We have used an ensemble of molecular, electrophysiological, and pharmacological techniques to ask: what types of sodium channels underlie hyperexcitability of primary sensory neurons after injury? Our studies demonstrate that multiple sodium channels, with distinct electrophysiological properties, are encoded by distinct mRNAs within small dorsal root ganglion (DRG) neurons, which include nociceptive cells. Moreover, several DRG neuron-specific sodium channels now have been cloned and sequenced. After injury to the axons of DRG neurons, there is a dramatic change in sodium channel expression in these cells, with down-regulation of some sodium channel genes and up-regulation of another, previously silent sodium channel gene. This plasticity in sodium channel gene expression is accompanied by electrophysiological changes that poise these cells to fire spontaneously or at inappropriate high frequencies. Changes in sodium channel gene expression also are observed in experimental models of inflammatory pain. Thus, sodium channel expression in DRG neurons is dynamic, changing significantly after injury. Sodium channels within primary sensory neurons may play an important role in the pathophysiology of pain.