641 resultados para CONTRACTIONS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Overuse injuries in violinists are a problem that has been primarily analyzed through the use of questionnaires. Simultaneous 3D motion analysis and EMG to measure muscle activity has been suggested as a quantitative technique to explore this problem by identifying movement patterns and muscular demands which may predispose violinists to overuse injuries. This multi-disciplinary analysis technique has, so far, had limited use in the music world. The purpose of this study was to use it to characterize the demands of a violin bowing task. Subjects: Twelve injury-free violinists volunteered for the study. The subjects were assigned to a novice or expert group based on playing experience, as determined by questionnaire. Design and Settings: Muscle activity and movement patterns were assessed while violinists played five bowing cycles (one bowing cycle = one down-bow + one up-bow) on each string (G, D, A, E), at a pulse of 4 beats per bow and 100 beats per minute. Measurements: An upper extremity model created using coordinate data from markers placed on the right acromion process, lateral epicondyle of the humerus and ulnar styloid was used to determine minimum and maximum joint angles, ranges of motion (ROM) and angular velocities at the shoulder and elbow of the bowing arm. Muscle activity in right anterior deltoid, biceps brachii and triceps brachii was assessed during maximal voluntary contractions (MVC) and during the playing task. Data were analysed for significant differences across the strings and between experience groups. Results: Elbow flexion/extension ROM was similar across strings for both groups. Shoulder flexion/extension ROM increaslarger for the experts. Angular velocity changes mirrored changes in ROM. Deltoid was the most active of the muscles assessed (20% MVC) and displayed a pattern of constant activation to maintain shoulder abduction. Biceps and triceps were less active (4 - 12% MVC) and showed a more periodic 'on and off pattern. Novices' muscle activity was higher in all cases. Experts' muscle activity showed a consistent pattern across strings, whereas the novices were more irregular. The agonist-antagonist roles of biceps and triceps during the bowing motion were clearly defined in the expert group, but not as apparent in the novice group. Conclusions: Bowing movement appears to be controlled by the shoulder rather than the elbow as shoulder ROM changed across strings while elbow ROM remained the same. Shoulder injuries are probably due to repetition as the muscle activity required for the movement is small. Experts require a smaller amount of muscle activity to perform the movement, possibly due to more efficient muscle activation patterns as a result of practice. This quantitative multidisciplinary approach to analysing violinists' movements can contribute to fuller understanding of both playing demands and injury mechanisms .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neuropeptide Th1RFamide with the sequence Phe-Met-Arg-Phe-amide was originally isolated in the clam Macrocallista nimbosa (price and Greenberg, 1977). Since its discovery, a large family ofFl\1RFamide-related peptides termed FaRPs have been found to be present in all major animal phyla with functions ranging from modulation of neuronal activity to alteration of muscular contractions. However, little is known about the genetics encoding these peptides, especially in invertebrates. As FaRP-encoding genes have yet to be investigated in the invertebrate Malacostracean subphylum, the isolation and characterization ofFaRP-encoding DNA and mRNA was pursued in this project. The immediate aims of this thesis were: (1) to amplify mRNA sequences of Procambarus clarkii using a degenerate oligonucleotide primer deduced from the common amino acid sequence ofisolated Procambarus FaRPS, (2) to determine if these amplification products encode FaRP gene sequences, and (3) to create a selective cDNA library of sequences recognized by the degenerate oligonucleotide primer. The polymerase chain reaction - rapid amplification of cDNA ends (PCR-RACE) is a procedure in which a single gene-specific primer is used in conjunction with a generalized 3' or 5' primer to amplify copies ofthe region between a single point in the transcript and the 3' or 5' end of cDNA of interest (Frohman et aI., 1988). PCRRACE reactions were optimized with respect to primers used, buffer composition, cycle number, nature ofgenetic substrate to be amplified, annealing, extension and denaturation temperatures and times, and use of reamplification procedures. Amplification products were cloned into plasmid vectors and recombinant products were isolated, as were the recombinant plaques formed in the selective cDNA library. Labeled amplification products were hybridized to recombinant bacteriophage to determine ligated amplification product presence. When sequenced, the five isolated PCR-RACE amplification products were determined not to possess FaRP-encoding sequences. The 200bp, 450bp, and 1500bp sequences showed homology to the Caenorhabditis elegans cosmid K09A11, which encodes for cytochrome P450; transfer-RNA; transposase; and tRNA-Tyr, while the 500bp and 750bp sequences showed homology with the complete genome of the Vaccinia virus. Under the employed amplification conditions the degenerate oligonucleotide primer was observed to bind to and to amplify sequences with either 9 or 10bp of 17bp identity. The selective cDNA library was obselVed to be of extremely low titre. When library titre was increased, white. plaques were isolated. Amplification analysis of eight isolated Agt11 sequences from these plaques indicated an absence of an insertion sequence. The degenerate 17 base oligonucleotide primer synthesized from the common amino acid sequence ofisolated Procambarus FaRPs was thus determined to be non-specific in its binding under the conditions required for its use, and to be insufficient for the isolation and identification ofFaRP-encoding sequences. A more specific primer oflonger sequence, lower degeneracy, and higher melting temperature (TJ is recommended for further investigation into the FaRP-encoding genes of Procambarlls clarkii.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty-six sedentary, college-aged females were matched and randomly assigned to one of two groups. The massed group (n=13) completed 15 maximal isometric elbow flexion strength trials in one session, while the distributed group (n=13) performed five such contractions on three successive days. After a two-week and three month rest interval, both groups returned to perfonn another five maximal isometric elbow flexion strength trials to assess retention of any potential strength gains. Elbow flexion torque and surface electromyography (SEMG) of the biceps and triceps were monitored concurrently. There was a significant (P < 0.05) increase in strength in both groups from block one (first five contractions) to block four (first retest) and from block one to block five (second retest). Both groups exhibited a similar linear increasing (P < 0.05) trend in biceps root-mean-square (RMS) SEMG amplitude. A significant (P < 0.05) decrease in triceps RMS SEMG amplitude was found between block one and block four for the distributed group. However, a significant (P < 0.05) increase was then found between block one and five for the massed group, and between blocks four and five for distributed group. These results suggest that there is flexibility in resistive exercise schedules. An increase in neural drive to the agonist muscle continued throughout testing. This was accompanied by a reduction in antagonist co activation that was a short-tenn (two weeks) training effect, dissipated over the longer rest interval (three months).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A FMRFamide-like neuropeptide with the sequence "DRNFLRF-NH2" was recently isolated from pericardial organs of crayfish (Mercier et aI., Peptides, 14, 137-143, 1993). This neuropeptide, referred to as "DF2'" has already been shown to elicit cardioexcitation and to enhance synaptic transmission at neuromuscular junctions. Possible effects ofDF2 on muscle were investigated using superficial extensor muscles of the abdomen of the crayfish, Procambarus clar/ai. These muscles are of the tonic type and generate slow contractions that affect posture. DF2, at concentrations of 10-8 M or higher, increased muscle tonus and induced spontaneous, rhythmic contractions. These effects were antagonized by 5 rnM Mn2+ but not by lO-7M tetrodotoxin (TTX). Thus, they represent direct actions on muscle cells (rather than effects on motor neurons) and are likely to involve calcium influx. In contrast, deep abdominal extensor muscles, responsible for rapid swimming movements, and superficial flexor muscles do not generate contractions in response to the peptide. 2 Spontaneous contractions were also induced in the superficial extensor muscles by decreasing the temperature to II-13°C. Such contractions were also TTX-insensitive and they were antagonized by adding calcium channel blockers (Mn2+, Cd2+ or Ni2+) or by removing calcium from the bathing solution. This suggests that the spontaneous contractions depend on an influx of calcium from the extracellular solution. N-type and L-type voltage dependent calcium channel blockers did not reduce the effect of the peptide or the spontaneous contractions suggesting that calcium influx is not through N- or L-type calcium channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Competitive sports participation in youth is becoming increasingly more common in the Western world. It is widely accepted that sports participation, specifically endurance training, is beneficial for physical, psychomotor, and social development of children. The research on the effect of endurance training in children has focused mainly on healthrelated benefits and physiological adaptations, particularly on maximal oxygen uptake. However, corresponding research on neuromuscular adaptations to endurance training and the latter's possible effects on muscle strength in youth is lacking. In children and adults, resistance training can enhance strength and mcrease muscle activation. However, data on the effect of endurance training on strength and neuromuscular adaptations are limited. While some evidence exists demonstrating increased muscle activation and possibly increased strength in endurance athletes compared with untrained adults, the neuromuscular adaptations to endurance training in children have not been examined. Thus, the purpose of this study was to examine maximal isometric torque and rate of torque development (RID), along with the pattern of muscle activation during elbow and knee flexion and extension in muscle-endurancetrained and untrained men and boys. Subjects included 65 males: untrained boys (n=18), endurance-trained boys (n=12), untrained men (n=20) and endurance-trained men (n=15). Maximal isometric torque and rate of torque development were measured using an isokinetic dynamometer (Biodex III), and neuromuscular activation was assessed using surface electromyography (SEMG). Muscle strength and activation were assessed in the dominant arm and leg, in a cross-balanced fashion during elbow and knee flexion and extension. The main variables included peak torque (T), RTD, rate of muscle activation (Q30), Electro-mechanical delay (EMD), time to peak RTD and co-activation index. Age differences in T, RTD, electro-mechanical delay (EMD) and rate of muscle activation (Q30) were consistently observed in the four contractions tested. Additionally, Q30, nonnalized for peak EMG amplitude, was consistently higher in the endurancetrained men compared with untrained men. Co-activation index was generally low in all contractions. For example, during maximal voluntary isometric knee extension, men were stronger, had higher RTD and Q30, whether absolute or nonnalized values were used. Moreover, boys exhibited longer EMD (64.8 ± 18.5 ms vs. 56.6 ± 15.3 ms, for boys and men respectively) and time to peak RTD (112.4 ± 33.4 ms vs. 100.8 ± 39.1 ms for boys and men, respectively). In addition, endurance-trained men had lower T compared with untrained men, yet they also exhibited significantly higher nonnalized Q30 (1.9 ± 1.2 vs. 1.1 ± 0.7 for endurance-trained men and untrained men, respectively). No training effect was apparent in the boys. In conclusion, the findings demonstrate muscle strength and activation to be lower in children compared with adults, regardless of training status. The higher Q30 of the endurance-trained men suggests neural adaptations, similar to those expected in response to resistance training. The lower peak torque may su9gest a higher relative involvement oftype I muscle fibres in the endurance-trained athletes. Future research is required to better understand the effect of growth and development on muscle strength and activation patterns during dynamic and sub-maximal isometric contractions. Furthennore, training intervention studies could reveal the effects of endurance training during different developmental stages, as well as in different muscle groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During maturation, muscle strength is enhanced through muscle growth, although neuro-muscular factors are also believed to be involved. In adults, training for power sports has been shown to enhance muscle strength and activation. The purpose of this study was to examine muscle strength and activation in power-trained athletes (POW) compared with non-athletes (CON), in boys and in adults. After familiarization subjects performed ten 5-s explosive maximal voluntary contractions for elbow and knee flexion and extension. The adults were stronger then the boys and the adult POW were stronger then the adult CON, even after correction for muscle size. Normalized rate of torque development was higher in the adults then in the boys and higher in the POW then CON boys. The rate of muscle activation was higher in the adults and POW groups. The results suggest that maturation and power-training have an additive effect on muscle activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuropeptides are the largest group of signalling chemicals that can convey the information from the brain to the cells of all tissues. DPKQDFMRFamide, a member of one of the largest families of neuropeptides, FMRFamide-like peptides, has modulatory effects on nerve-evoked contractions of Drosophila body wall muscles (Hewes et aI.,1998) which are at least in part mediated by the ability of the peptide to enhance neurotransmitter release from the presynaptic terminal (Hewes et aI., 1998, Dunn & Mercier., 2005). However, DPKQDFMRFamide is also able to act directly on Drosophila body wall muscles by inducing contractions which require the influx of extracellular Ca 2+ (Clark et aI., 2008). The present study was aimed at identifying which proteins, including the membrane-bound receptor and second messenger molecules, are involved in mechanisms mediating this myotropic effect of the peptide. DPKQDFMRFamide induced contractions were reduced by 70% and 90%, respectively, in larvae in which FMRFamide G-protein coupled receptor gene (CG2114) was silenced either ubiquitously or specifically in muscle tissue, when compared to the response of the control larvae in which the expression of the same gene was not manipulated. Using an enzyme immunoassay (EIA) method, it was determined that at concentrations of 1 ~M- 0.01 ~M, the peptide failed to increase cAMP and cGMP levels in Drosophila body wall muscles. In addition, the physiological effect of DPKQDFMRFamide at a threshold dose was not potentiated by 3-lsobutyl-1-methylxanthine, a phosphodiesterase inhibitor, nor was the response to 1 ~M peptide blocked or reduced by inhibitors of cAMP-dependent or cGMP-dependent protein kinases. The response to DPKQDFMRFamide was not affected in the mutants of the phosholipase C-~ (PLC~) gene (norpA larvae) or IP3 receptor mutants, which suggested that the PLC-IP3 pathway is not involved in mediat ing the peptide's effects. Alatransgenic flies lacking activity of calcium/calmodul in-dependent protein kinase (CamKII showed an increase in muscle tonus following the application of 1 JlM DPKQDFMRFamide similar to the control larvae. Heat shock treatment potentiated the response to DPKQDFMRFamide in both ala1 and control flies by approximately 150 and 100 % from a non heat-shocked larvae, respectively. Furthermore, a CaMKII inhibitor, KN-93, did not affect the ability of peptide to increase muscle tonus. Thus, al though DPKQDFMRFamide acts through a G-protein coupled FMRFamide receptor, it does not appear to act via cAMP, cGMP, IP3, PLC or CaMKl1. The mechanism through which the FMRFamide receptor acts remains to be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined muscle strength, muscle performance, and neuromuscular function during contractions at different velocities across maturation stages and between sexes. Participants included pre-pubertal, late-pubertal and adult males and females. All completed 8 isometric and 8 isokinetic leg extensions at two different velocities. Peak torque (PT), rate of torque development (PrTD), electromechanical-day (EMD), rate of muscle activation (Q30), muscle activation efficiency and coactivation were determined. Sex, maturity, and velocity main effects were found in PT and PrTD, reflecting greater values in men, adults, and isometric contractions respectively. When values were normalized to quadriceps cross-sectional area (qCSA), there was still an increase with maturity. EMD decreased with maturity. Adults had greater activation efficiency than children. Overall, differences in muscle size and neuromuscular function failed to explain group differences in PT or PrTD. More research is needed to investigate why adults may be affected to a greater extent by increasing movement velocity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phenomenon of over-recovery consists of a participant’s maximal force levels returning to values above initial levels. The present study examined the presence and causes of over-recovery following local muscular fatigue. Fourteen males completed two fatigue protocols consisting of maximal isometric dorsiflexion contractions. Upon completion of the fatigue protocol participants’ force was monitored over a 15 minute recovery period. Dorsiflexion force and surface electromyography (sEMG) from the tibialis anterior and soleus were monitored concurrently. Following the two fatigue conditions (10 and 20% force decrement) force recovered to 100.5 and 99.5% of initial levels for each condition, respectively. Surface EMG root-mean-square amplitude and MPF exhibited changes consistent with a warm-up effect. It was concluded that over-recovery was not present in the tibialis anterior following a local muscular fatigue. However, the return in force to initial values, rather than a persistent decrement as normally observed, was mediated by the warm-up effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to test the hypothesis that the potentiation of dynamic function was dependent upon both length change speed and direction. Mouse EDL was cycled in vitro (250 C) about optimal length (Lo) with constant peak strain (± 2.5% Lo) at 1.5,3.3 and 6.9 Hz before and after a conditioning stimulus. A single pulse was applied during shortening or lengthening and peak dynamic (concentric or eccentric) forces were assessed at Lo. Stimulation increased peak concentric force at all frequencies (range: 19±1 to 30 ± 2%) but this increase was proportional to shortening speed, as were the related changes to concentric work/power (range: -15 ± 1 to 39 ± 1 %). In contrast, stimulation did not increase eccentric force, work or power at any frequency. Thus, results reveal a unique hysteresis like effect for the potentiation of dynamic output wherein concentric and eccentric forces increase and decrease, respectively, with work cycle frequency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indwelling electromyography (EMG) has great diagnostic value but its invasive and often painful characteristics make it inappropriate for monitoring human movement. Spike shape analysis of the surface electromyographic signal responds to the call for non-invasive EMG measures for monitoring human movement and detecting neuromuscular disorders. The present study analyzed the relationship between surface and indwelling EMG interference patterns. Twenty four males and twenty four females performed three isometric dorsiflexion contractions at five force levels from 20% to maximal force. The amplitude measures increased differently between electrode types, attributed to the electrode sensitivity. The frequency measures were different between traditional and spike shape measures due to different noise rejection criteria. These measures were also different between surface and indwelling EMG due to the low-pass tissue filtering effect. The spike shape measures, thought to collectively function as a means to differentiate between motor unit characteristics, changed independent of one another.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first and rate-limiting step of lipolysis is the removal of the first fatty acid from a triglyceride molecule; it is catalyzed by adipose triglyceride lipase (ATGL). ATGL is co-activated by comparative gene identification-58 (CGI-58) and inhibited by the G(0)/G(1) switch gene-2 protein (G0S2). G0S2 has also recently been identified as a positive regulator of oxidative phosphorylation within the mitochondria. Previous research has demonstrated in cell culture, a dose dependent mechanism for inhibition by G0S2 on ATGL. However our data is not consistent with this hypothesis. There was no change in G0S2 protein content during an acute lipolytic inducing set of contractions in both whole muscle, and isolated mitochondria yet both ATGL and G0S2 increase following endurance training, in spite of the fact that there should be increased reliance on intramuscular lipolysis. Therefore, inhibition of ATGL by G0S2 appears to be regulated through more complicated intracellular or post-translation regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drosophila melanogaster is a model system for examining the mechanisms of action of neuropeptides. DPKQDFMRFamide was previously shown to induce contractions in Drosophila body wall muscle fibres in a Ca(2+)-dependent manner. The present study examined the possible involvement of a G-protein-coupled receptor and second messengers in mediating this myotropic effect after removal of the central nervous system. DPKQDFMRFamide-induced contractions were reduced by 70% and 90%, respectively, in larvae with reduced expression of the Drosophila Fmrf receptor (FR) either ubiquitously or specifically in muscle tissue, compared with the response in control larvae in which expression was not manipulated. No such effect occurred in larvae with reduced expression of this gene only in neurons. The myogenic effects of DPKQDFMRFamide do not appear to be mediated through either of the two Drosophila myosuppressin receptors (DmsR-1 and DmsR-2). DPKQDFMRFamide-induced contractions were not reduced in Ala1 transgenic flies lacking activity of calcium/calmodulin-dependent protein kinase (CamKII), and were not affected by the CaMKII inhibitor KN-93. Peptide-induced contractions in the mutants of the phospholipase C-β (PLCβ) gene (norpA larvae) and in IP3 receptor mutants were similar to contractions elicited in control larvae. The peptide failed to increase cAMP and cGMP levels in Drosophila body wall muscles. Peptide-induced contractions were not potentiated by 3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor, and were not antagonized by inhibitors of cAMP-dependent or cGMP-dependent protein kinases. Additionally, exogenous application of arachidonic acid failed to induce myogenic contractions. Thus, DPKQDFMRFamide induces contractions via a G-protein coupled FMRFamide receptor in muscle cells but does not appear to act via cAMP, cGMP, IP3, PLC, CaMKII or arachidonic acid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Octopamine (OA) and tyramine (TA) play important roles in homeostatic mechanisms, behavior, and modulation of neuromuscular junctions in arthropods. However, direct actions of these amines on muscle force production that are distinct from effects at the neuromuscular synapse have not been well studied. We utilize the technical benefits of the Drosophila larval preparation to distinguish the effects of OA and TA on the neuromuscular synapse from their effects on contractility of muscle cells. In contrast to the slight and often insignificant effects of TA, the action of OA was profound across all metrics assessed. We demonstrate that exogenous OA application decreases the input resistance of larval muscle fibers, increases the amplitude of excitatory junction potentials (EJPs), augments contraction force and duration, and at higher concentrations (10−5 and 10−4 M) affects muscle cells 12 and 13 more than muscle cells 6 and 7. Similarly, OA increases the force of synaptically driven contractions in a cell-specific manner. Moreover, such augmentation of contractile force persisted during direct muscle depolarization concurrent with synaptic block. OA elicited an even more profound effect on basal tonus. Application of 10−5 M OA increased synaptically driven contractions by ∼1.1 mN but gave rise to a 28-mN increase in basal tonus in the absence of synaptic activation. Augmentation of basal tonus exceeded any physiological stimulation paradigm and can potentially be explained by changes in intramuscular protein mechanics. Thus we provide evidence for independent but complementary effects of OA on chemical synapses and muscle contractility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Octopamine (OA) and tyramine (TA) play important roles in homeostatic mechanisms, behavior, and modulation of neuromuscular junctions in arthropods. However, direct actions of these amines on muscle force production that are distinct from effects at the neuromuscular synapse have not been well studied. We utilize the technical benefits of the Drosophila larval preparation to distinguish the effects of OA and TA on the neuromuscular synapse from their effects on contractility of muscle cells. In contrast to the slight and often insignificant effects of TA, the action of OA was profound across all metrics assessed. We demonstrate that exogenous OA application decreases the input resistance of larval muscle fibers, increases the amplitude of excitatory junction potentials (EJPs), augments contraction force and duration, and at higher concentrations (10(-5) and 10(-4) M) affects muscle cells 12 and 13 more than muscle cells 6 and 7. Similarly, OA increases the force of synaptically driven contractions in a cell-specific manner. Moreover, such augmentation of contractile force persisted during direct muscle depolarization concurrent with synaptic block. OA elicited an even more profound effect on basal tonus. Application of 10(-5) M OA increased synaptically driven contractions by ≈ 1.1 mN but gave rise to a 28-mN increase in basal tonus in the absence of synaptic activation. Augmentation of basal tonus exceeded any physiological stimulation paradigm and can potentially be explained by changes in intramuscular protein mechanics. Thus we provide evidence for independent but complementary effects of OA on chemical synapses and muscle contractility.