919 resultados para COMPUTATIONAL NEUROSCIENCE
Resumo:
Inelastic x-ray scattering spectroscopy is a versatile experimental technique for probing the electronic structure of materials. It provides a wealth of information on the sample's atomic-scale structure, but extracting this information from the experimental data can be challenging because there is no direct relation between the structure and the measured spectrum. Theoretical calculations can bridge this gap by explaining the structural origins of the spectral features. Reliable methods for modeling inelastic x-ray scattering require accurate electronic structure calculations. This work presents the development and implementation of new schemes for modeling the inelastic scattering of x-rays from non-periodic systems. The methods are based on density functional theory and are applicable for a wide variety of molecular materials. Applications are presented in this work for amorphous silicon monoxide and several gas phase systems. Valuable new information on their structure and properties could be extracted with the combination of experimental and computational methods.
Resumo:
This thesis presents ab initio studies of two kinds of physical systems, quantum dots and bosons, using two program packages of which the bosonic one has mainly been developed by the author. The implemented models, \emph{i.e.}, configuration interaction (CI) and coupled cluster (CC) take the correlated motion of the particles into account, and provide a hierarchy of computational schemes, on top of which the exact solution, within the limit of the single-particle basis set, is obtained. The theory underlying the models is presented in some detail, in order to provide insight into the approximations made and the circumstances under which they hold. Some of the computational methods are also highlighted. In the final sections the results are summarized. The CI and CC calculations on multiexciton complexes in self-assembled semiconductor quantum dots are presented and compared, along with radiative and non-radiative transition rates. Full CI calculations on quantum rings and double quantum rings are also presented. In the latter case, experimental and theoretical results from the literature are re-examined and an alternative explanation for the reported photoluminescence spectra is found. The boson program is first applied on a fictitious model system consisting of bosonic electrons in a central Coulomb field for which CI at the singles and doubles level is found to account for almost all of the correlation energy. Finally, the boson program is employed to study Bose-Einstein condensates confined in different anisotropic trap potentials. The effects of the anisotropy on the relative correlation energy is examined, as well as the effect of varying the interaction potential.}
Resumo:
Computational fluid dynamics has reached a stage where flow field in practical situation can be predicted to aid the design and to probe into the fundamental flow physics to understand and resolve the issues in fundamental fluid mechanics The study examines the computation of reacting flows After exploring the conservation equations for species and energy, the methods of closing the reaction rate terms in turbulent flow have been examined briefly Two cases of computation where combustion-flow interaction plays important role, have been discussed to illustrate the computational aspects and the physical insight that can be gained by the reacting flow computation
Resumo:
Even research models of helicopter dynamics often lead to a large number of equations of motion with periodic coefficients; and Floquet theory is a widely used mathematical tool for dynamic analysis. Presently, three approaches are used in generating the equations of motion. These are (1) general-purpose symbolic processors such as REDUCE and MACSYMA, (2) a special-purpose symbolic processor, DEHIM (Dynamic Equations for Helicopter Interpretive Models), and (3) completely numerical approaches. In this paper, comparative aspects of the first two purely algebraic approaches are studied by applying REDUCE and DEHIM to the same set of problems. These problems range from a linear model with one degree of freedom to a mildly non-linear multi-bladed rotor model with several degrees of freedom. Further, computational issues in applying Floquet theory are also studied, which refer to (1) the equilibrium solution for periodic forced response together with the transition matrix for perturbations about that response and (2) a small number of eigenvalues and eigenvectors of the unsymmetric transition matrix. The study showed the following: (1) compared to REDUCE, DEHIM is far more portable and economical, but it is also less user-friendly, particularly during learning phases; (2) the problems of finding the periodic response and eigenvalues are well conditioned.
Resumo:
Various factore controlling the preferred facial selectivity in the reductions of a number of sterically unbiased ketones have been evaluated using a semiempirical MO procedure. MNDO optimized geometries do not reveal any significant ground-state distortions which can be correlated with the observed face selectivities. Electrostatic effecta due to an approaching reagent were modeled by placing a test negative charge at a fixed distance from the carbonyl carbon on each of the two faces. A second series of calculations was carried out using the hydride ion as a test nucleophile. The latter calculations effectively include orbital interactions involving the u and u* orbitals of the newly formed bond in the reaction. The computed energy differences with the charge model are generally much larger compared to those with the hydride ion. However, both models lead to predictions which are qualitatively consistent with the experimentally determined facial preferences for most of the systems. Thus, electrostatic interactions between the nucleophile and the substrate seem to effectively determine the face selectivities in these molecules. However, there are a few exceptions in which orbital interactions are found to contribute significantly and occasionally reverse the preference dictated by electrostatic effecta. The remarkable succew of the hydride model calculations, in spite of retaining the unperturbed geometries of the substrates, points to the unimportance of torsional effeds and orbital distortions associated with the pyramidalized carbonyl unit in the transition state in most of the substrates considered. Additional experimental results are reported which provide useful calibration for the present computational approach.
Resumo:
Bispropargyl sulfones equipped with aromatic rings of dissimilar nature were synthesized. Under basic conditions, these sulfones isomerized to the bisallenic sulfones, creating a competitive scenario between two alternate Garratt-Braverman (GB) cyclization pathways. The observed product distribution ruled out the involvement of any ionic intermediate and supported the diradical mechanism with greater involvement of the electron-rich aromatic ring via the more nucleophilic radical. DFT-based calculations supported the diradical mechanism along with the observed selectivity.
Resumo:
Experiments have repeatedly observed both thermodynamic and dynamic anomalies in aqueous binary mixtures, surprisingly at low solute concentration. Examples of such binary mixtures include water-DMSO, water-ethanol, water-tertiary butyl alcohol (TBA), and water-dioxane, to name a few. The anomalies have often been attributed to the onset of a structural transition, whose nature, however, has been left rather unclear. Here we study the origin of such anomalies using large scale computer simulations and theoretical analysis in water-DMSO binary mixture. At very low DMSO concentration (below 10%), small aggregates of DMSO are solvated by water through the formation of DMSO-(H2O)(2) moieties. As the concentration is increased beyond 10-12% of DMSO, spanning clusters comprising the same moieties appear in the system. Those clusters are formed and stabilized not only through H-bonding but also through the association of CH3 groups of DMSO. We attribute the experimentally observed anomalies to a continuum percolation-like transition at DMSO concentration X-DMSO approximate to 12-15%. The largest cluster size of CH3-CH3 aggregation clearly indicates the formation of such percolating clusters. As a result, a significant slowing down is observed in the decay of associated rotational auto time correlation functions (of the S = O bond vector of DMSO and O-H bond vector of water). Markedly unusual behavior in the mean square fluctuation of total dipole moment again suggests a structural transition around the same concentration range. Furthermore, we map our findings to an interacting lattice model which substantiates the continuum percolation model as the reason for low concentration anomalies in binary mixtures where the solutes involved have both hydrophilic and hydrophobic moieties.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants as well as well-known carcinogens. Therefore, it is important to develop an effective receptor for the detection and quantification of such molecules in solution. In view of this, a 1,3-dinaphthalimide derivative of calix4]arene (L) has been synthesized and characterized, and the structure has been established by single crystal XRD. In the crystal lattice, intermolecular arm-to-arm pi center dot center dot center dot pi overlap dominates and thus L becomes a promising receptor for providing interactions with the aromatic species in solution, which can be monitored by following the changes that occur in its fluorescence and absorption spectra. On the basis of the solution studies carried out with about 17 derivatives of the aromatic guest molecular systems, it may be concluded that the changes that occur in the fluorescence intensity seem to be proportional to the number of aromatic rings present and thus proportional to the extent of pi center dot center dot center dot pi interaction present between the naphthalimide moieties and the aromatic portion of the guest molecule. Though the nonaromatic portion of the guest species affects the fluorescence quenching, the trend is still based on the number of rings present in these. Four guest aldehydes are bound to L with K-ass of 2000-6000 M-1 and their minimum detection limit is in the range of 8-35 mu M. The crystal structure of a naphthaldehyde complex, L.2b, exhibits intermolecular arm-to-arm as well as arm-to-naphthaldehyde pi center dot center dot center dot pi interactions. Molecular dynamics studies of L carried out in the presence of aromatic aldehydes under vacuum as well as in acetonitrile resulted in exhibiting interactions observed in the solid state and hence the changes observed in the fluorescence and absorption spectra are attributable for such interactions. Complex formation has also been delineated through ESI MS studies. Thus L is a promising receptor that can recognize PAHs by providing spectral changes proportional to the aromatic conjugation of the guest and the extent of aromatic pi center dot center dot center dot pi interactions present between L and the guest.
Diastereospecific Coupling of Imines by Low-Valent Titanium: An Experimental and Computational Study
Resumo:
The reaction of phenylsilane (PhSiH3) and titanium(IV) isopropoxide Ti(OiPr)(4)] generates low-valent titanium alkoxides that reduce and reductively couple imines. The C-C coupling reaction is diastereospecific, with exclusive formation of the (+/-)-isomer. The yield is dependent on the concentration of titanium(IV) isopropoxide used. Using imines with varying electronic demand revealed that the coupling is most efficient for unsubstituted imines. The involvement of a trimeric titanium biradical species is invoked to explain the observed concentration dependence and diastereospecificity in the reaction. Multilayer ONIOM (''our own n-layered integrated molecular orbital and molecular mechanics'') calculations were carried out on the plausible intermediates involved by using the Guassian 09 suite of programs. Formation of the trimeric biradical species leading to the formation of the (+/-)-isomer is more favored than formation of the trimeric biradical species, which leads to the meso-isomer. Similar calculations with dimeric intermediates do not predict the (+/-)-selectivity. Mass spectral analysis of the reaction mixture indicates the presence of a trimeric titanium alkoxide species.
Resumo:
The problem of structural system identification when measurements originate from multiple tests and multiple sensors is considered. An offline solution to this problem using bootstrap particle filtering is proposed. The central idea of the proposed method is the introduction of a dummy independent variable that allows for simultaneous assimilation of multiple measurements in a sequential manner. The method can treat linear/nonlinear structural models and allows for measurements on strains and displacements under static/dynamic loads. Illustrative examples consider measurement data from numerical models and also from laboratory experiments. The results from the proposed method are compared with those from a Kalman filter-based approach and the superior performance of the proposed method is demonstrated. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The insertion reactions of zirconium(IV) n-butoxide and titanium(IV) n-butoxide with a heterocumulene like carbodiimide, carbon dioxide or phenyl isocyanate are compared. Both give an intermediate which carries out metathesis at elevated temperatures by inserting a second heterocumulene in a head-to-head fashion. The intermediate metallacycle extrudes a new heterocumulene, different from the two that have inserted leading to metathesis. As the reaction is reversible, catalytic metathesis is feasible. In stoichiometric reactions heterocumulene insertion, metathesis and metathesis cum insertion products are observed. However, catalytic amounts of the metal alkoxide primarily led to metathesis products. It is shown that zirconium alkoxides promote catalytic metathesis (isocyanates, carbon dioxide) more efficiently than the corresponding titanium alkoxide. The difference in the metathetic activity of these alkoxides has been explained by a computational study using model complexes Ti(OMe)(4) (1bTi) and Zr(OMe)(4) (1bZr). The computation was carried out at the B3LYP/LANL2DZ level of theory.
Resumo:
Reaction between the various species in slag and metal phase is usually mass transfer controlled. There have been continuous efforts to increase the reaction efficiency in slag-metal system, especially during decarburization of steel to produce the ultra low carbon steel (ULCS) in secondary steelmaking. It has been found that the surface reaction is a dominant factor in the final stage of decarburization. In the initial stage, the inner site reaction is major factor in the refining process. The mixing of bath affects the later reaction. However, the former reaction (surface reaction) is affected by the plume size area at the top of the metal surface. Therefore, a computational study has been made to understand the fluid dynamics of a new secondary steelmaking process called Revolutionary Degasser Activator (REDA) to study the bath mixing and plume area. REDA process has been considered as it is claimed that this process can reduce the carbon content in steel below 10ppm in a less time than the other existing processes such as RH and Tank degasser. This study shows that both bath mixing and plume area are increased in REDA process facilitating it to give the desired carbon content in less time. Qualitative comments are made on slag-metal reaction system based on this finding.