632 resultados para CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
Resumo:
The industry, over the years, has been working to improve the efficiency of diesel engines. More recently, it was observed the need to reduce pollutant emissions to conform to the stringent environmental regulations. This has attached a great interest to develop researches in order to replace the petroleum-based fuels by several types of less polluting fuels, such as blends of diesel oil with vegetable oil esters and diesel fuel with vegetable oils and alcohol, emulsions, and also microemulsions. The main objective of this work was the development of microemulsion systems using nonionic surfactants that belong to the Nonylphenols ethoxylated group and Lauric ethoxylated alcohol group, ethanol/diesel blends, and diesel/biodiesel blends for use in diesel engines. First, in order to select the microemulsion systems, ternary phase diagrams of the used blends were obtained. The systems were composed by: nonionic surfactants, water as polar phase, and diesel fuel or diesel/biodiesel blends as apolar phase. The microemulsion systems and blends, which represent the studied fuels, were characterized by density, viscosity, cetane number and flash point. It was also evaluated the effect of temperature in the stability of microemulsion systems, the performance of the engine, and the emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons, and smoke for all studied blends. Tests of specific fuel consumption as a function of engine power were accomplished in a cycle diesel engine on a dynamometer bench and the emissions were evaluated using a GreenLine 8000 analyzer. The obtained results showed a slight increase in fuel consumption when microemulsion systems and diesel/biodiesel blends were burned, but it was observed a reduction in the emission of nitrogen oxides, unburned hydrocarbons, smoke index and f sulfur oxides
Resumo:
Discussions about pollution caused by vehicles emission are old and have been developed along the years. The search for cleaner technologies and frequent weather alterations have been inducing industries and government organizations to impose limits much more rigorous to the contaminant content in fuels, which have an direct impact in atmospheric emissions. Nowadays, the quality of fuels, in relation to the sulfur content, is carried out through the process of hydrodesulfurization. Adsorption processes also represent an interesting alternative route to the removal of sulfur content. Both processes are simpler and operate to atmospheric temperatures and pressures. This work studies the synthesis and characterization of aluminophosphate impregnate with zinc, molybdenum or both, and its application in the sulfur removal from the gasoline through the adsorption process, using a pattern gasoline containing isooctane and thiophene. The adsorbents were characterized by x-ray diffraction, differential thermal analysis (DTG), x-ray fluorescence and scanning electron microscopy (SEM). The specific area, volume and pore diameter were determined by BET (Brunauer- Emmet-Teller) and the t-plot method. The sulfur was quantified by elementary analysis using ANTEK 9000 NS. The adsorption process was evaluated as function of the temperature variation and initial sulfur content through the adsorption isotherm and its thermodynamic parameters. The parameters of entropy (ΔS), enthalpy variation (ΔH) and free Gibbs energy (ΔG) were calculated through the graph ln(Kd) versus 1/T. Langmuir, Freundlich and Langmuir-Freundlich models were adjusted to the experimental data, and the last one had presented better results. The thermodynamic tests were accomplished in different temperatures, such as 30, 40 and 50ºC, where it was concluded the adsorption process is spontaneous and exothermic. The kinetic of adsorption was studied by 24 h and it showed that the capability adsorption to the adsorbents studied respect the following order: MoZnPO > MoPO > ZnPO > AlPO. The maximum adsorption capacity was 4.91 mg/g for MoZnPO with an adsorption efficiency of 49%.
Resumo:
This work aims to determine a better methodology to help predicting some operational parameters to a new design of mixer-settler on treating wastewater produced by petroleum industry, called MDIF (Misturador-Decantador à Inversão de Fases/ Mixer-Settler based on Phase Inversion MSPI). The data from this research were obtained from the wastewater treatment unit, called MSPI-TU, installed on a wastewater treatment plant (WTP) of PETROBRAS/UO-RNCE. The importance in determining the better methodology to predict the results of separation and extraction efficiency of the equipment, contributes significantly to determine the optimum operating variables for the control of the unit. The study was based on a comparison among the experimental efficiency (E) obtained by operating MSPI-TU, the efficiency obtained by experimental design equation (Eplan) from the software Statistica Experimental Design® (version 7.0), and the other obtained from a modeling equation based on a dimensional analysis (Ecalc). The results shows that the experimental design equation gives a good prediction of the unit efficiencies with better data reliability, regarding to the condition before a run operation. The average deviation between the proposed by statistic planning model equation and experimental data was 0.13%. On the other hand, the efficiency calculated by the equation which represents the dimensional analysis, may result on important relative deviations (up 70%). Thus, the experimental design is confirmed as a reliable tool, with regard the experimental data processing of the MSPI-TU
Resumo:
Escherichia coli has been one of the most widely used hosts in recombinant protein production, in both laboratory and industrial scale since the advent of recombinant DNA technology. Despite the substantial progress of studies on the molecular biology and immunology of infections, there is currently no medication-based prophylaxis capable of preventing leishmaniasis. As such, there is a great need to identify specific antigens for the development of vaccines and diagnostic kits against visceral leishmaniasis. Thus, the primary goal of the present study is to assess the influence of cultivation conditions on the production of Leishmania chagasi antigens, carried out in a rotating incubator and bioreactor. To that end, several assays were conducted to evaluate the kinetic behavior of antigens (648, 503) of Leishmania. i. chagasi in two different compositions of media (2xTY, TB), with and without an inducer. In order to improve expression, assays were performed in a benchtop bioreactor using the best conditions obtained in a rotating incubator, in addition to assessing the influence of stirring speed. Results show that high complexity of the cultivation medium favored kinetic growth of clones (648, 503). However, in assays submitted to induction by IPTG, this elevated complexity did not promote the expression of recombinant proteins. Expression of antigens 648 and 503 exhibited behavior associated with growth and, in terms of location, proteins 648 and 503 are intracellularly stored. Lactose may be the most adequate inducer in protein expression, when considering factors, cost, toxicity and stability. Elevated stirring may increase cell growth in clone 53, although it may not result in high concentrations for the protein of interest. On the other hand, positive results were obtained for all recombinant clones (648, 503) tested, confirmed by the electrophoretic profile
Resumo:
Increasing concern with the environment, in addition to strict laws, has induced the industries to find altenatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo¬Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. it's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter
Resumo:
Increasing concern with the environment, in addition to strict laws, has induced the industries to find alternatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo- Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. It's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter
Resumo:
The objective of this study was to produce biofuels (bio-oil and gas) from the thermal treatment of sewage sludge in rotating cylinder, aiming industrial applications. The biomass was characterized by immediate and instrumental analysis (elemental analysis, scanning electron microscopy - SEM, X-ray diffraction, infrared spectroscopy and ICP-OES). A kinetic study on non-stationary regime was done to calculate the activation energy by Thermal Gravimetric Analysis evaluating thermochemical and thermocatalytic process of sludge, the latter being in the presence of USY zeolite. As expected, the activation energy evaluated by the mathematical model "Model-free kinetics" applying techniques isoconversionais was lowest for the catalytic tests (57.9 to 108.9 kJ/mol in the range of biomass conversion of 40 to 80%). The pyrolytic plant at a laboratory scale reactor consists of a rotating cylinder whose length is 100 cm with capable of processing up to 1 kg biomass/h. In the process of pyrolysis thermochemical were studied following parameters: temperature of reaction (500 to 600 ° C), flow rate of carrier gas (50 to 200 mL/min), frequency of rotation of centrifugation for condensation of bio-oil (20 to 30 Hz) and flow of biomass (4 and 22 g/min). Products obtained during the process (pyrolytic liquid, coal and gas) were characterized by classical and instrumental analytical techniques. The maximum yield of liquid pyrolytic was approximately 10.5% obtained in the conditions of temperature of 500 °C, centrifugation speed of 20 Hz, an inert gas flow of 200 mL/min and feeding of biomass 22 g/min. The highest yield obtained for the gas phase was 23.3% for the temperature of 600 °C, flow rate of 200 mL/min inert, frequency of rotation of the column of vapor condensation 30 Hz and flow of biomass of 22 g/min. The non-oxygenated aliphatic hydrocarbons were found in greater proportion in the bio-oil (55%) followed by aliphatic oxygenated (27%). The bio-oil had the following characteristics: pH 6.81, density between 1.05 and 1.09 g/mL, viscosity between 2.5 and 3.1 cSt and highest heating value between 16.91 and 17.85 MJ/ kg. The main components in the gas phase were: H2, CO, CO2 and CH4. Hydrogen was the main constituent of the gas mixture, with a yield of about 46.2% for a temperature of 600 ° C. Among the hydrocarbons formed, methane was found in higher yield (16.6%) for the temperature 520 oC. The solid phase obtained showed a high ash content (70%) due to the abundant presence of metals in coal, in particular iron, which was also present in bio-oil with a rate of 0.068% in the test performed at a temperature of 500 oC.
Resumo:
Amorphous silica-alumina and modified by incipient impregnation of iron, nickel, zinc and chromium were synthetized in oxide and metal state and evaluated as catalysts for the chloromethane conversion reaction. With known techniques their textural properties were determined and dynamics techniques in programmed temperature were used to find the acid properties of the materials. A thermodynamic model was used to determine the adsorption and desorption capacity of chloromethane. Two types of reactions were studied. Firstly the chloromethane was catalytically converted to hydrocarbons (T = 300 450 oC e m = 300 mg) in a fixed bed reactor with controlled pressure and flow. Secondly the deactivation of the unmodified support was studied (at 300 °C and m=250 g) in a micro-adsorver provided of gravimetric monitoring. The metal content (2,5%) and the chloromethane percent of the reagent mixture (10% chloromethane in nitrogen) were fixed for all the tests. From the results the chloromethane conversion and selectivity of the gaseous products (H2, CH4, C3 and C4) were determined as well as the energy of desorption (75,2 KJ/mol for Ni/Al2O3-SiO2 to 684 KJ/mol for the Zn/Al2O3-SiO2 catalyst) considering the desorption rate as a temperature function. The presence of a metal on the support showed to have an important significance in the chloromethane condensation. The oxide class catalyst presented a better performance toward the production of hydrocarbons. Especial mention to the ZnO/Al2O3-SiO2 that, in a gas phase basis, produced C3 83 % max. and C4 63% max., respectively, in the temperature of 450 oC and 20 hours on stream. Hydrogen was produced exclusively in the FeO/Al2O3-SiO2 catalysts (15 % max., T = 550 oC and 5,6 h on stream) and Ni/SiO2-Al2O3 (75 % max., T = 400 oC and 21,6 h on stream). All the catalysts produced methane (10 à 92 %), except for Ni/Al2O3-SiO2 and CrO/Al2O3-SiO2. In the deactivation study two models were proposed: The parallel model, where the product production competes with coke formation; and the sequential model, where the coke formation competes with the product desorption dessorption step. With the mass balance equations and the mechanism proposed six parameters were determined. Two kinetic parameters: the hydrocarbon formation constant, 8,46 10-4 min-1, the coke formation, 1,46 10-1 min-1; three thermodynamic constants (the global, 0,003, the chloromethane adsorption 0,417 bar-1, the hydrocarbon adsorption 2,266 bar-1), and the activity exponent of the coke formation (1,516). The model was reasonable well fitted and presented a satisfactory behavior in relation with the proposed mechanism
Resumo:
This study evaluates the biosurfactants production from cassava wastewater, an agro industrial residue, to be used as carbon source. Using a factorial design 24-1 (half fraction), 10 tests were performed using Pseudomonas aeruginosa AP029/GVII-A in submerged batch cultivation in rotating incubator (shaker). The influence of factors (temperature, agitation, aeration ratio and concentration of cultivation medium) at two different levels for the synthesis of the biosurfactant. Samples were collected throughout the cultivation by 132 hours of fermentation were completed. The best outcome was intended by following production through substrate consumption, dry matter, reduction of surface tension (ring method) and emulsification index. The kinetics of microorganism was assessed for the carbon source used. The results showed that the cassava wastewater is a well assimilable substrate for the production of biotensoactive, reaching 91 % of consumption by the micro-organism under study. The growth temperature was found to be one of the leading factors in the synthesis of the metabolite, followed by aeration and also due to the agitation. The best results showed a 30 % reduction in surface tension (% RTS) for the environment, reaching values of 30 mN/m; 3.0 g /L of biomass and emulsifying index greater than 65 %. The metabolite synthesized still remained stable for different salt concentrations (1, 5 and 10 % w/ v) and alkaline pH (8-10).
Resumo:
Among the waste generated in the petrochemical industry water associated with oil production is the most important. It is considered one of the great challenges due to the presence of considered toxic chemicals present in this composition. The presence of these substances difficult to reuse the water associated with the enhanced recovery processes, so that prior to their reuse or disposal, treatment is necessary. This paper aimed to study the removal efficiency of chemical species: Ba2+, Ni2+, Cd2+, Cu2+, Cr3+, Sr2+ and Zn2+, present in the composition of the water associated with oil production by electrocoagulation. The evaluation of removal of these chemical species was performed by laboratory tests using electrochemical batch reactors and continuous flow. Initial tests were performed with electrocoagulation of synthetic wastewater in batch reactor using iron electrode. Results of removal of Zn2+ and Ni2+ were 78 % and 59 % respectively. While the percentage of removed Ba2+ was 19 % by 30 minutes of treatment and by applying current of 1.10 A. The tests were performed on effluent batch reactor applying the electrochemical technique with stainless steel electrodes 304, the objective was to remove part of the dispersed oil and also of organic compounds in the effluent. Under the experimental conditions used, the maximum result was obtained TOG was 60 % and TOC was approximately 50 % compared to the initial concentration. In the experiments carried out in continuous reactor, with effluent semisynthetic, have been used electrodes of iron and aluminum and the results were 100 % removal of Cd2+, Cu2+, Cr3+ and Zn2+ and 77 % of Sr2+. These percentages were only attainable through the use of the iron electrode. However, when the electrode was replaced by aluminum, there was a reduction in the percentage of removal to 65 %, using the same flow rate and current. Therefore according to the results obtained using the iron electrode was more effective in removing these metals and the conditions of lower current and lower flow rate was satisfactory, as observed in the experimental design adopted
Resumo:
Rare earth elements have recently been involved in a range of advanced technologies like microelectronics, membranes for catalytic conversion and applications in gas sensors. In the family of rare earth elements like cerium can play a key role in such industrial applications. However, the high cost of these materials and the control and efficiencies associated processes required for its use in advanced technologies, are a permanent obstacle to its industrial development. In present study was proposed the creation of phases based on rare earth elements that can be used because of its thermal behavior, ionic conduction and catalytic properties. This way were studied two types of structure (ABO3 and A2B2O7), the basis of rare earths, observing their transport properties of ionic and electronic, as well as their catalytic applications in the treatment of methane. For the process of obtaining the first structure, a new synthesis method based on the use of EDTA citrate mixture was used to develop a precursor, which undergone heat treatment at 950 ° C resulted in the development of submicron phase BaCeO3 powders. The catalytic activity of perovskite begins at 450 ° C to achieve complete conversion at 675 ° C, where at this temperature, the catalytic efficiency of the phase is maximum. The evolution of conductivity with temperature for the perovskite phase revealed a series of electrical changes strongly correlated with structural transitions known in the literature. Finally, we can establish a real correlation between the high catalytic activity observed around the temperature of 650 ° C and increasing the oxygen ionic conductivity. For the second structure, showed clearly that it is possible, through chemical processes optimized to separate the rare earth elements and synthesize a pyrochlore phase TR2Ce2O7 particular formula. This "extracted phase" can be obtained directly at low cost, based on complex systems made of natural minerals and tailings, such as monazite. Moreover, this method is applied to matters of "no cost", which is the case of waste, making a preparation method of phases useful for high technology applications
Resumo:
The green bean has organoleptic and nutritional characteristics that make it an important food source in tropical regions such as the Northeast of Brazil. It is a cheap source of protein and important for nutrition of rural population contributing significantly in subsistence farming of the families from Brazil s northeast. It is consumed in entire region and together with the dry meat and other products composes the menu of typical restaurants, being characterized as an important product for economy of Northeast. The green bean is consumed freshly harvested and has short cycle, being characterized as a very perishable food, which hampers your market. The drying method is an alternative to increase the lifetime and provide a reduction volume of this product making easier your transportation and storage. However is necessary to search ways of drying which keep the product quality not only from the nutritional standpoint but also organoleptic. Some characteristics may change with the drying process such as the coloring, the rehydration capacity and the grains cooking time. The decrease of drying time or of exposure of the grains to high temperature minimizes the effects related with the product quality loss. Among the techniques used to reduce the drying time and improve some characteristics of the product, stands out the osmotic dehydration, widely used in combined processes such as the pretreatment in drying food. Currently the use of the microwaves has been considered an alternative for drying food. The microwave energy generates heat inside of materials processed and the heating is practically instantaneous, resulting in shorter processing times and product quality higher to that obtained by conventional methods. Considering the importance of the green beans for the Northeast region, the wastefulness of production due to seasonality of the crop and your high perishability, the proposal of this thesis is the study of drying grain by microwaves with and without osmotic pretreatment, focusing on the search of conditions of processes which favor the rehydration of the product preserving your organoleptic characteristics. Based on the analysis of the results of osmotic dehydration and dielectric properties was defined the operating condition to be used in pretreatment of the green bean, with osmotic concentration in saline solution containing 12,5% of sodium chloride, at 40°C for 20 minutes. The drying of green bean by microwave was performed with and without osmotic pretreatment on the optimized condition. The osmotic predehydration favored the additional drying, reducing the process time. The rehydration of dehydrated green bean with and without osmotic pretreatment was accomplished in different temperature conditions and immersion time according to a factorial design 22, with 3 repetitions at the central point. According to results the better condition was obtained with the osmotically pretreated bean and rehydrated at a temperature of 60°C for 90 minutes. Sensory analysis was performed comparing the sample of the green bean in natura and rehydrated in optimized conditions, with and without osmotic pretreatment. All samples showed a good acceptance rate regarding the analyzed attributes (appearance, texture, color, odor and taste), with all values above 70%. Is possible conclude that the drying of green bean by microwave with osmotic pretreatment is feasible both in respect to technical aspects and rehydration rates and sensory quality of the product
Resumo:
The main objective of this research was the development and characterization of conventional and modified cationic asphalt emulsions. The asphalt emulsions were developed by using the Petroleum Asphalt Cement (CAP 50-70) from Fazenda Belém (Petrobras -Aracati-Ce). The first step in this research was the development of the oil phase (asphalt + solvent) and the aqueous phase (water + emulsifying agent + acid + additives), separately. During the experiments for the obtaining of the conventional asphalt emulsion, the concentration of each constituent was evaluated. For the obtaining of the oil phase, kerosene was used as solvent at 15 and 20 wt.%. For the development of the aqueous phase, the emulsifying agent was used at 0.3 and 3.0 wt.%, whereas the acid and the additive were set at 0.3 wt.%. The percentage of asphalt in the asphalt emulsion was varied in 50, 55, and 60 wt.% and the heating temperature was set at 120 °C. The aqueous phase in the asphalt emulsion was varied from 16.4 to 34.1 wt.% and the heating temperature was set at 60 °C. After the obtaining of the oil and the aqueous phases, they were added at a colloidal mill, remaining under constant stirring and heating during 15 minutes. Each asphalt emulsion was evaluated considering: sieve analysis, Saybolt Furol viscosity, pH determination, settlement and storage stability, residue by evaporation, and penetration of residue. After the characterization of conventional emulsions, it was chosen the one that presented all properties in accordance with Brazilian specifications (DNER-EM 369/97). This emulsion was used for the development of all modified asphalt emulsions. Three polymeric industrial residues were used as modifier agents: one from a clothing button industry (cutouts of clothing buttons) and two from a footwear industry (cutouts of sandals and tennis shoes soles), all industries located at Rio Grande do Norte State (Brazil).The polymeric residues were added into the asphalt emulsion (1 to 6 wt.%) and the same characterization rehearsals were accomplished. After characterization, it were developed the cold-mix asphalts. It was used the Marshall mix design. For cold-mix asphalt using the conventional emulsion, it was used 5, 6 and 7 wt.% asphalt emulsion. The conventional mixtures presented stability values according Brazilian specification (DNER-369/97). For mixtures containing asphalt modified emulsions, it was observed that the best results were obtained with emulsions modified by button residue
Utilização de microemulsões como agentes modificadores de superfícies para remoção de íons metálicos
Resumo:
The heavy metals are used in many industrial processes and when discharged to the environment can cause harmful effects to human, plants and animals. The adsorption technology has been used as an effective methodology to remove metallic ions. The search for new adsorbents motivated the development of this research, accomplished with the purpose of removing Cr (III) from aqueous solutions. Diatomite, chitosan, Filtrol 24TM and active carbon were used as adsorbents. To modify the adsorbent surface was used a bicontinuous microemulsion composed by water (25%), kerosene (25%), saponified coconut oil (10%) and as co-surfactant isoamyl or butyl alcohols (40%). With the objective of developing the best operational conditions the research started with the surfactant synthesis and after that the pseudo-ternary diagrams were plotted. It was decided to use the system composed with isoamyl alcohol as co-surfactant due its smallest solubility in water. The methodology to impregnate the microemulsion on the adsorbents was developed and to prepare each sample was used 10 g of adsorbent and 20 mL of microemulsion. The effect of drying time and temperature was evaluated and the best results were obtained with T = 65 ºC and t = 48 h. After evaluating the efficiency of the tested adsorbents it was decided to use chitosan and diatomite. The influence of the agitation speed, granule size, heavy metal synthetic solution concentration, pH, contact time between adsorbent and metal solution, presence or not of NaCl and others metallic ions in the solution (copper and nickel) were evaluated. The adsorption isotherms were obtained and Freundlich and Langmuir models were tested. The last one correlated better the data. With the purpose to evaluate if using a surfactant solution would supply similar results, the adsorbent surface was modified with this solution. It was verified that the adsorbent impregnated with a microemulsion was more effective than the one with a surfactant solution, showing that the organic phase (kerosene) was important in the heavy metal removal process. It was studied the desorption process and verified that the concentrated minerals acids removed the chromium from the adsorbent surface better than others tested solutions. The treatment showed to be effective, being obtained an increase of approximately 10% in the chitosan s adsorption capacity (132 mg of Cr3+ / g adsorbent), that was already quite efficient, and for diatomite, that was not capable to remove the metal without the microemulsion treatment, it was obtained a capacity of 10 mg of Cr3+ / g adsorbent, checking the applied treatment effectiveness
Resumo:
In this work a Plackett-Burman Design with 8 factors and 12 trials in 2 levels with 3 repetitions at the center point was used in order to investigate the influence of the concentration of chitosan, peptone, yeast extract, NaNO3, K2HPO4, KCl, MgSO4.7H2O and FeSO4 on chitosanase production by Metarhizium anisopliae. Runs were carried out using submerged discontinuous cultivation for enzyme production. The results of the Plackett & Burman Design showed that only two factors, chitosan concentration as well as FeSO4 had influence on chitosanolytic activity, while the increase in concentration of other factors not contributed significantly to the quitosanolítica activity. Cultivation medium optimization for enzyme production was carried out using a Composite Central Design, with the most important factors for chitosanolytic activity (chitosan and FeSO4), in accordance with Plackett & Burman Design, and keeping the other nutrients in their minimum values. On this other design, it was taken the highest limit in Plackett & Burman Design as the lowest limit (-1) to FeSO4 factor. The results showed that the enzyme production was favoured by increasing the chitosan concentration and by decreasing FeSO4. Maximum production for chitosanolytic activity was about 70.0 U/L and was reached in only 18 h of fermentation, a result about twenty-eight times greater than a former study using the same microorganism (about 2.5 U/L at 48 h)