976 resultados para CMOS transistor


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a comprehensive theoretical study of the Trench Insulated Gate Bipolar Transistors (TIGBT). Specific physical and geometrical effects, such as the accumulation layer injection, increased channel density, increased channel charge and transversal electric field modulation are discussed. The potential advantages of the Trench IGBT over its conventional planar variant are highlighted. It is concluded that the Trench IGBT is one of the most promising structures in the area of high voltage MOS-controllable switching devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the UV photoconductivity characteristics of ZnO nanowire field effect transistors (FETs) irradiated by proton beams. After proton beam irradiation (using a beam energy of 10 MeV and a fluence of 10 12 cm -2), the drain current and carrier density in the ZnO nanowire FETs decreased, and the threshold voltage shifted to the positive gate bias direction due to the creation of interface traps at the SiO 2/ZnO nanowire interface by the proton beam. The interface traps produced a higher surface barrier potential and a larger depletion region at the ZnO nanowire surface, affecting the photoconductivity and its decay time. The UV photoconductivity of the proton-irradiated ZnO nanowire FETs was higher and more prolonged than that of the pristine ZnO nanowire FETs. The results extend our understanding of the UV photoconductivity characteristics of ZnO nanowire devices and other materials when irradiated with highly energetic particles. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this presentation, we report excellent electrical and optical characteristics of a dual gate photo thin film transistor (TFT) with bi-layer oxide channel, which was designed to provide virgin threshold voltage (V T) control, improve the negative bias illumination temperature stress (NBITS) reliability, and offer high photoconductive gain. In order to address the photo-sensitivity of phototransistor for the incoming light, top transparent InZnO (IZO) gate was employed, which enables the independent gate control of dual gate photo-TFT without having any degradation of its photosensitivity. Considering optimum initial V T and NBITS reliability for the device operation, the top gate bias was judiciously chosen. In addition, the speed and noise performance of the photo-TFT is competitive with silicon photo-transistors, and more importantly, its superiority lies in optical transparency. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the growth of multi wall and single wall carbon nanotubes (CNT) onto substrates containing commercial 1-m CMOS integrated circuits. The low substrate temperature growth (450°C) was achieved by using hot filament (1000 °C) to preheat the source gases (C 2H 2 and NH 3) and in situ mass spe-ctroscopy was used to identify the gas species present. Field effect transistors based on Single Walled Carbon Nanotube (SWNT) grown under such conditions were fabricated and examined. CNT growth was performed directly on the passivation layer of the CMOS integrated circuits. Individual n- and p-type CMOS transistors were compared before and after CNT growth. The transistors survive and operate after the CNT growth process, although small degradations are observed in the output current (for p-transistors) and leakage current (for both p- and n-type transistors). © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene has extraordinary electronic and optical properties and holds great promise for applications in photonics and optoelectronics. Demonstrations including high-speed photodetectors, optical modulators, plasmonic devices, and ultrafast lasers have now been reported. More advanced device concepts would involve photonic elements such as cavities to control light-matter interaction in graphene. Here we report the first monolithic integration of a graphene transistor and a planar, optical microcavity. We find that the microcavity-induced optical confinement controls the efficiency and spectral selection of photocurrent generation in the integrated graphene device. A twenty-fold enhancement of photocurrent is demonstrated. The optical cavity also determines the spectral properties of the electrically excited thermal radiation of graphene. Most interestingly, we find that the cavity confinement modifies the electrical transport characteristics of the integrated graphene transistor. Our experimental approach opens up a route towards cavity-quantum electrodynamics on the nanometre scale with graphene as a current-carrying intra-cavity medium of atomic thickness. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trapped electrons, located close to the channel of a transistor, are promising as data storage elements in non-classical information processing. Cryogenic microwave spectroscopy has shown that these electrons give rise to high quality factor resonances in the drain current and a post excitation dynamic behaviour that is related to the system lifetime. Using a floating poly-silicon gate transistor, single shot spectroscopy is performed to characterise the dynamic behaviour during excitation. This behaviour is seen to be dominated by the decay of the transient component, which gives rise to oscillations around the high quality factor resonance. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose novel designs that enhance the plasma concentration across the Field Stop IGBT. The "p-ring" and the "point-injection" type devices exhibit increased cathode side conductivity modulation which results in impressive IGBT performance improvement. These designs are shown to be extremely effective in lowering the on-state losses without compromising the switching performance or the breakdown rating. For the same switching losses we can achieve more than 20% reduction of the on state energy losses compared to the conventional FS IGBT. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of a semiconducting carbon nanotube (CNT) is assessed and tabulated for parameters against those of a metal-oxide-semiconductor field-effect transistor (MOSFET). Both CNT and MOSFET models considered agree well with the trends in the available experimental data. The results obtained show that nanotubes can significantly reduce the drain-induced barrier lowering effect and subthreshold swing in silicon channel replacement while sustaining smaller channel area at higher current density. Performance metrics of both devices such as current drive strength, current on-off ratio (Ion/Ioff), energy-delay product, and power-delay product for logic gates, namely NAND and NOR, are presented. Design rules used for carbon nanotube field-effect transistors (CNTFETs) are compatible with the 45-nm MOSFET technology. The parasitics associated with interconnects are also incorporated in the model. Interconnects can affect the propagation delay in a CNTFET. Smaller length interconnects result in higher cutoff frequency. © 2012 Tan et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three-dimensional spatial distribution of Al in the high-k metal gates of metal-oxide-semiconductor field-effect-transistors is measured by atom probe tomography. Chemical distribution is correlated with the transistor voltage threshold (VTH) shift generated by the introduction of a metallic Al layer in the metal gate. After a 1050 °C annealing, it is shown that a 2-Å thick Al layer completely diffuses into oxide layers, while a positive VTH shift is measured. On the contrary, for thicker Al layers, Al precipitation in the metal gate stack is observed and the VTH shift becomes negative. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atom probe tomography was used to study the redistribution of platinum and arsenic atoms after Ni(Pt) silicidation of As-doped polycrystalline Si. These measurements were performed on a field-effect transistor and compared with those obtained in unpatterned region submitted to the same process. These results suggest that Pt and As redistribution during silicide formation is only marginally influenced by the confinement in microelectronic devices. On the contrary, there is a clear difference with the redistribution reported in the literature for the blanket wafers. Selective etching used to remove the non-reacted Ni(Pt) film after the first rapid heat treatment may induce this difference. © 2011 American Institute of Physics.