927 resultados para CIRCADIAN OSCILLATORS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammals the retina contains photoactive molecules responsible for both vision and circadian photoresponse systems. Opsins, which are located in rods and cones, are the pigments for vision but it is not known whether they play a role in circadian regulation. A subset of retinal ganglion cells with direct projections to the suprachiasmatic nucleus (SCN) are at the origin of the retinohypothalamic tract that transmits the light signal to the master circadian clock in the SCN. However, the ganglion cells are not known to contain rhodopsin or other opsins that may function as photoreceptors. We have found that the two blue-light photoreceptors, cryptochromes 1 and 2 (CRY1 and CRY2), recently discovered in mammals are specifically expressed in the ganglion cell and inner nuclear layers of the mouse retina. In addition, CRY1 is expressed at high level in the SCN and oscillates in this tissue in a circadian manner. These data, in conjunction with the established role of CRY2 in photoperiodism in plants, lead us to propose that mammals have a vitamin A-based photopigment (opsin) for vision and a vitamin B2-based pigment (cryptochrome) for entrainment of the circadian clock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The circadian clock-associated 1 (CCA1) gene encodes a Myb-related transcription factor that has been shown to be involved in the phytochrome regulation of Lhcb1*3 gene expression and in the function of the circadian oscillator in Arabidopsis thaliana. By using a yeast interaction screen to identify proteins that interact with CCA1, we have isolated a cDNA clone encoding a regulatory (β) subunit of the protein kinase CK2 and have designated it as CKB3. CKB3 is the only reported example of a third β-subunit of CK2 found in any organism. CKB3 interacts specifically with CCA1 both in a yeast two-hybrid system and in an in vitro interaction assay. Other subunits of CK2 also show an interaction with CCA1 in vitro. CK2 β-subunits stimulate binding of CCA1 to the CCA1 binding site on the Lhcb1*3 gene promoter, and recombinant CK2 is able to phosphorylate CCA1 in vitro. Furthermore, Arabidopsis plant extracts contain a CK2-like activity that affects the formation of a DNA–protein complex containing CCA1. These results suggest that CK2 can modulate CCA1 activity both by direct interaction and by phosphorylation of the CCA1 protein and that CK2 may play a role in the function of CCA1 in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interlocked feedback loops may represent a common feature among the regulatory systems controlling circadian rhythms. The Neurospora circadian feedback loops involve white collar-1 (wc-1), wc-2, and frequency (frq) genes. We show that WC-1 and WC-2 proteins activate the transcription of frq gene, whereas FRQ protein plays dual roles: repressing its own transcription, probably by interacting with the WC-1/WC-2 complex, and activating the expression of both WC proteins. Thus, they form two interlocked feedback loops: one negative and one positive. We establish the physiological significance of the interlocked positive feedback loops by showing that the levels of WC-1 and WC-2 determine the robustness and stability of the clock. Our data demonstrate that with WC-1 being the limiting factor in the WC-1/WC-2 complex, the greater the levels of WC-1 and WC-2, the higher the level of the FRQ oscillation and the more robust the overt rhythms. Our data also show that, despite considerable changes in the levels of WC-1, WC-2, and FRQ, the period of the clock has been limited to a small range, suggesting that the interlocked circadian feedback loops are also important for determining the circadian period length of the clock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The level of mRNAs derived from the plastid-encoded psbD light-responsive promoter (LRP) is controlled by a circadian clock(s) in wheat (Triticum aestivum). The circadian oscillations in the psbD LRP mRNA level persisted for at least three cycles in continuous light and for one cycle in continuous dark, with maxima in subjective morning and minima in subjective early night. In vitro transcription in chloroplast extracts revealed that the circadian cycles in the psbD LRP mRNA level were dominantly attributed to the circadian-regulated transcription of the psbD LRP. The effects of various mutations introduced into the promoter region on the psbD LRP activity in vitro suggest the existence of two positive elements located between −54 and −36, which generally enhance the transcription activity, and an anomalous core promoter structure lacking the functional “−35” element, which plays a crucial role in the circadian fluctuation and light dependency of psbD LRP transcription activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overnight low-temperature exposure inhibits photosynthesis in chilling-sensitive species such as tomato (Lycopersicon esculentum) and cucumber by as much as 60%. In an earlier study we showed that one intriguing effect of low temperature on chilling-sensitive plants is to stall the endogenous rhythm controlling transcription of certain nuclear-encoded genes, causing the synthesis of the corresponding transcripts and proteins to be mistimed when the plant is rewarmed. Here we show that the circadian rhythm controlling the activity of sucrose phosphate synthase (SPS) and nitrate reductase (NR), key control points of carbon and nitrogen metabolism in plant cells, is delayed in tomato by chilling treatments. Using specific protein kinase and phosphatase inhibitors, we further demonstrate that the chilling-induced delay in the circadian control of SPS and NR activity is associated with the activity of critical protein phosphatases. The sensitivity of the pattern of SPS activity to specific inhibitors of transcription and translation indicates that there is a chilling-induced delay in SPS phosphorylation status that is caused by an effect of low temperature on the expression of a gene coding for a phosphoprotein phosphatase, perhaps the SPS phosphatase. In contrast, the chilling-induced delay in NR activity does not appear to arise from effects on NR phosphorylation status, but rather from direct effects on NR expression. It is likely that the mistiming in the regulation of SPS and NR, and perhaps other key metabolic enzymes under circadian regulation, underlies the chilling sensitivity of photosynthesis in these plant species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sorghum (Sorghum bicolor L. Moench) cultivar 58M, which contains the null mutant phytochrome B gene, shows reduced photoperiodic sensitivity and exhibits a shade-avoidance phenotype. Ethylene production by seedlings of wild-type and phytochrome B mutant cultivars was monitored every 3 h, and both cultivars were found to produce ethylene in a circadian rhythm, with peak production occurring during the day. The phytochrome B mutant produces rhythmic peaks of ethylene with approximately 10 times the amplitude of the wild-type counterpart with the same period and diurnal timing. The source of the mutant's additional ethylene is the shoot. The diurnal rhythm can be produced with either light or temperature cycles; however, both light and temperature cycles are required for circadian entrainment. The temperature signal overrides the light signal in the production of diurnal rhythms, because seedlings grown under thermoperiods reversed with the photoperiod produced ethylene peaks during the warm nights. To examine the effect of extreme shading on ethylene production, seedlings were grown under dim, far-red-enriched light. This treatment duplicated the phytochrome B mutant's shade-avoidance phenotype in the wild type and caused the wild type to produce ethylene peaks similar to those observed in the mutant. The results confirm that phytochrome B is not required for proper function of circadian timing, but it may be involved in modulating physiological rhythms driven by the biological clock oscillator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We isolated and characterized a novel light-regulated cDNA from the short-day plant Pharbitis nil that encodes a protein with a leucine (Leu) zipper motif, designated PNZIP (Pharbitis nil Leu zipper). The PNZIP cDNA is not similar to any other gene with a known function in the database, but it shares high sequence homology with an Arabidopsis expressed sequence tag and to two other sequences of unknown function from the cyanobacterium Synechocystis spp. and the red alga Porphyra purpurea, which together define a new family of evolutionarily conserved Leu zipper proteins. PNZIP is a single-copy gene that is expressed specifically in leaf photosynthetically active mesophyll cells but not in other nonphotosynthetic tissues such as the epidermis, trichomes, and vascular tissues. When plants were exposed to continuous darkness, PNZIP exhibited a rhythmic pattern of mRNA accumulation with a circadian periodicity of approximately 24 h, suggesting that its expression is under the control of an endogenous clock. However, the expression of PNZIP was unusual in that darkness rather than light promoted its mRNA accumulation. Accumulation of PNZIP mRNA during the dark is also regulated by phytochrome, since a brief exposure to red light in the middle of the night reduced its mRNA levels. Moreover, a far-red-light treatment at the end of day also reduced PNZIP mRNA accumulation during the dark, and that effect could be inhibited by a subsequent exposure to red light, showing the photoreversible response attributable to control through the phytochrome system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chicken pineal gland contains the autonomous circadian oscillator together with the photic-input pathway. We searched for chicken pineal genes that are induced by light in a time-of-day-dependent manner, and isolated chicken homolog of bZIP transcription factor E4bp4 (cE4bp4) showing high similarity to vrille, one of the Drosophila clock genes. cE4bp4 was expressed rhythmically in the pineal gland with a peak at very early (subjective) night under both 12-h light/12-h dark cycle and constant dark conditions, and the phase was nearly opposite to the expression rhythm of cPer2, a chicken pineal clock gene. Luciferase reporter gene assays showed that cE4BP4 represses cPer2 promoter through a E4BP4-recognition sequence present in the 5′-flanking region, indicating that cE4BP4 can down-regulate the chick pineal cPer2 expression. In vivo light-perturbation studies showed that the prolongation of the light period to early subjective night maintained the high level expression of the pineal cE4bp4, and presumably as a consequence delayed the onset of the induction of the pineal cPer2 expression in the next morning. These light-dependent changes in the mRNA levels of the pineal cE4bp4 and cPer2 were followed by a phase-delay of the subsequent cycles of cE4bp4/cPer2 expression, suggesting that cE4BP4 plays an important role in the phase-delaying process as a light-dependent suppressor of cPer2 gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To ascertain whether the circadian oscillator in the prokaryotic cyanobacterium Synechococcus PCC 7942 regulates the timing of cell division in rapidly growing cultures, we measured the rate of cell division, DNA content, cell size, and gene expression (monitored by luminescence of the PpsbAI::luxAB reporter) in cultures that were continuously diluted to maintain an approximately equal cell density. We found that populations dividing at rates as rapid as once per 10 h manifest circadian gating of cell division, since phases in which cell division slows or stops recur with a circadian periodicity. The data clearly show that Synechococcus cells growing with doubling times that are considerably faster than once per 24 h nonetheless express robust circadian rhythms of cell division and gene expression. Apparently Synechococcus cells are able to simultaneously sustain two timing circuits that express significantly different periods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the vertebrate retina, the light responses of post-receptor neurons depend on the ambient or background illumination. Using intracellular recording, we have found that a circadian clock regulates the light responses of dark-adapted fish cone horizontal cells. Goldfish were maintained on a 12-hr light/12-hr dark cycle. At different times of the day or night, retinas were superfused in darkness for 90 min ("prolonged darkness"), following which horizontal cells were impaled without the aid of any light flashes. In some of the experiments, fish were kept in constant darkness for 3-48 hr prior to surgery. After prolonged darkness during the night, but not during the day, the light responses of L-type cone horizontal cells resembled those of rod horizontal cells with respect to threshold, waveform, intensity-response functions, and spectral sensitivity. Following light sensitization during the night and day, the light responses of rod and cone horizontal cells were clearly different with respect to threshold, waveform, intensity-response functions, and spectral sensitivity. Under conditions of constant darkness for two full light/dark cycles, average responses of cone horizontal cells to a bright light stimulus during the subjective day were greater than during the subjective night. Prior reversal of the light/dark cycle reversed the 24-hr rhythm of cone horizontal cell responses to bright lights. In addition, following one full cycle of constant darkness, average cone horizontal cell spectral sensitivity during the subjective night closely matched that of rod horizontal cells, whereas average cone horizontal cell spectral sensitivity during the subjective day was similar to that of red (625 nm) cones. These results indicate that the effects of dark adaptation depend on the time of day and are regulated by a circadian clock so that cone input to cone horizontal cells predominates in the day and rod input predominates in the night.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Levels of mRNA for the chloroplast-encoded elongation factor Tu (tufA) showed a dramatic daily oscillation in the green alga Chlamydomonas reinhardtii, peaking once each day in the early light period. The oscillation of tufA mRNA levels continued in cells shifted to continuous light or continuous dark for at least 2-3 days. Run-off transcription analyses showed that the rate of tufA transcription also peaked early in the light period and, moreover, that this transcriptional oscillation continued in cells shifted to continuous conditions. The half-life of tufA mRNA was estimated at different times and found to vary considerably during a light-dark cycle but not in cells shifted to continuous light. Light-dark patterns of transcription of several other chloroplast-encoded genes were examined and also found to persist in cells shifted to continuous light or dark. These results indicate that a circadian clock controls the transcription of tufA and other chloroplast-encoded genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new methods accurately integrate forced and damped oscillators. A family of analytical functions is introduced known as T-functions which are dependent on three parameters. The solution is expressed as a series of T-functions calculating their coefficients by means of recurrences which involve the perturbation function. In the T-functions series method the perturbation parameter is the factor in the local truncation error. Furthermore, this method is zero-stable and convergent. An application of this method is exposed to resolve a physic IVP, modeled by means of forced and damped oscillators. The good behavior and precision of the methods, is evidenced by contrasting the results with other-reputed algorithms implemented in MAPLE.