758 resultados para CECAL LIGATION
Resumo:
Angiogenesis is a basic change occurring during repair by granulation tissue. This process seems to precede fibrosis formation in most types of chronic liver disease. To examine its presence and significance in different types of hepatic insults, this paper sought to identify the presence, evolution and peculiarities of angiogenesis in the most common experimental models of hepatic fibrosis. The characterization of cells, vessels and extracellular matrix and the identification of factors associated with endothelium (factor VIII RA), vascular basement membrane, other components of the vascular walls (actin, elastin) and the presence of the vascular-endothelial growth factor were investigated. The models examined included Capillaria hepatica septal fibrosis, whole pig serum injections, carbon tetrachloride administration, main bile duct ligation and Schistosoma mansoni infection. The first four models were performed in rats, while the last used mice. All models studied exhibited prominent angiogenesis. The most evident relationship between angiogenesis and fibrosis occurred with the C. hepatica model due to circumstances to be discussed. Special attention was paid to the presence of pericytes and to their tendency to become detached from the vascular wall and be transformed into myofibroblasts, which is a sequence of events that explains the decisive role angiogenesis plays in fibrosis.
Resumo:
Objective: Intimal hyperplasia (IH) is one of the leading causes of failure¦after vascular interventions. It involves the proliferation of smooth muscle¦cells (SMCs) and the production of extracellular fibrous matrix. Gap junctional¦communication, mediated by membrane connexins (Cx), participates to the¦control of proliferation and migration. In human and mice vessels, endothelial¦cells (ECs) express Cx37, Cx40 and Cx43, whereas SMCs are coupled by Cx43.¦We previously reported that Cx43 was increased in the SMCs of a human vein¦during the development of IH.¦In our experimental model of mice carotid artery ligation (CAL), luminal¦narrowing occurred by SMCs-rich neointima after 2-4 weeks of ligation.¦This experimental model of mice allows us to decipher the regulation of the¦cardiovascular connexins in the mouse.¦Methods: C57BL/6 mice were anesthetized and the left common carotid artery¦was dissected through a neck incision and ligated near the carotid bifurcation.¦The mice were then euthanized at 7, 14 and 28 days. Morphometric analyses¦were then performed with measurements of total area, lumen and intimal area¦and media thickness. Western blots, immunocytochemistry and quantitative¦RT-PCR were performed for Cx43, Cx40 and Cx37.¦Results: All animals recovered with no symptom of stroke. Morphometric¦analysis demonstrated that carotid ligation resulted in an initial increase (after¦7 days) of the total vessel area followed by its reduction (after 28 days). This¦phenomena was associated with a progressive increase in the intimal area and a¦consecutive decrease of the lumen. The media thickness was also increased after¦14 and 28 days. This neointima formation was associated to a marked increase¦in the expression of Cx43 at both protein and RNA levels. Concomitantly,¦Cx40 and Cx37 protein expression were reduced in the endothelium. This was¦confirmed by en face analyses showing reduced Cx37 and Cx40 levels in the¦endothelial cells covering the lesion.¦Conclusion: This study assessed the regulation of the cardiovascular connexins¦in the development of IH. This model will allow us to characterize the¦involvement of gap junctions in the IH. In turn, this understanding is¦instrumental for the development of new therapeutical tools, as well as for¦the evaluation of the effects of drugs and gene therapies of this disease for which¦there is no efficient therapy available.
Resumo:
We describe a new rapid and efficient polymerase chain reaction (PCR)-based site-directed mutagenesis method. This procedure is effective with any plasmid and it employs four oligonucleotide primers. One primer contains the desired mutation, the second is oriented in the opposite direction (one of these two primers should be phosphorylated), and the third and fourth should be coding in complementary fashion for a unique restriction site to be introduced in a nonessential region. The method consists of two simultaneous PCR reactions; the PCR products are digested with the enzyme that recognizes the newly introduced unique restriction site and then ligased and used to transform competent bacteria. Additionally, the use of Dpn I facilitates the elimination of template DNA. The newly introduced restriction site is essential for ligation in the correct orientation of the two-PCR products and is further used for mutant screening. Resulting plasmids carry both the new restriction site and the desired mutation. Using this method, more than 20 mutants have already been generated (using two different kinds of templates); all these mutants were sequenced for the desired mutation and transfected into AtT-20 cells and the expressed mutant proteins encoded by the vector were assayed.
Resumo:
PURPOSE: To report the case of identical dichorionic diamniotic female twins with unilateral retinoblastoma in 13q deletion syndrome. METHODS: Clinical and ophthalmoscopic evaluation, combination of multiple ligation-dependent probe amplification, array-comparative genomic hybridization analyses, and magnetic resonance imaging were performed. RESULTS: Peculiar facial features, marked hypotonia, gastroesophageal reflux, interatrial septal defect with left to right shunt and light dilatation of right chambers, 5th finger hypoplasia, 3rd-5th toes clinodactyly, 2nd toe overlapped to 3rd toe, and cutis marmorata were found. Ophthalmoscopic evaluation revealed unilateral retinoblastoma in both girls. Magnetic resonance imaging detected corpus callosum hypoplasia in both twins. A 34.4-Mb deletion involving bands 13q13.2-q21.33 and including the RB1 gene was identified in both twins. The deletion was not present in the DNA of their parents and older brother. CONCLUSIONS: Dysmorphic features in children must be always suspicious of 13q deletion syndrome and a short ophthalmoscopic follow-up is necessary to detect the presence of a retinoblastoma.
Resumo:
BTLA (B- and T-lymphocyte attenuator) is a prominent co-receptor that is structurally and functionally related to CTLA-4 and PD-1. In T cells, BTLA inhibits TCR-mediated activation. In B cells, roles and functions of BTLA are still poorly understood and have never been studied in the context of B cells activated by CpG via TLR9. In this study, we evaluated the expression of BTLA depending on activation and differentiation of human B cell subsets in peripheral blood and lymph nodes. Stimulation with CpG upregulated BTLA, but not its ligand: herpes virus entry mediator (HVEM), on B cells in vitro and sustained its expression in vivo in melanoma patients after vaccination. Upon ligation with HVEM, BTLA inhibited CpG-mediated B cell functions (proliferation, cytokine production, and upregulation of co-stimulatory molecules), which was reversed by blocking BTLA/HVEM interactions. Interestingly, chemokine secretion (IL-8 and MIP1β) was not affected by BTLA/HVEM ligation, suggesting that BTLA-mediated inhibition is selective for some but not all B cell functions. We conclude that BTLA is an important immune checkpoint for B cells, as similarly known for T cells.
Resumo:
About 2% of all paragangliomas are located in the chest, and a few have been described to be found in the heart. Primary cardiac paragangliomas are extremely uncommon tumors and surgical experience with this neoplasm is limited. Treatment strategies described in the literature have included simple excision, excision with reconstruction, autotransplantation after excision of the tumor and even orthotopic cardiac transplantation, depending on the extent of disease. A primary retrocardiac paraganglioma catecholamine-productive was identified in an asymptomatic 49-year old female associated to familial pheochromocytoma-paraganglioma syndrome caused by germline mutation of the gen which codifies for the subunit B of succinate dehydrogenase enzyme (SDHB). The neoplasm was surgically excised from the posterior surface of the left atrium via median sternotomy using cardiopulmonary bypass. Direct ligation of feeding vessels of the tumor along with left atrial reinforcement using a pericardial patch was performed. The post-operative course was uneventful, with normalization of catecholamine secretion and no recurrence at three-month follow-up. We review the current literature about this exceptional cardiac tumor, pathophysiological conditions and options for surgical management.
Resumo:
Vitellogenin genes are expressed specifically in the liver of female oviparous vertebrates under the strict control of estrogen. To explain this tissue-specific expression, we performed a detailed analysis of the Xenopus laevis vitellogenin gene B1 promoter by DNase I footprinting and gel mobility-shift assays. We characterized five binding sites for the ubiquitous factor CTF/NF-I. Two of these sites are close to the TATA-box, whereas the others are located on both sides of the estrogen responsive unit formed by two imperfect estrogen response elements. Moreover two liver-enriched factors, C/EBP and HNF3, were found to interact with multiple closely spaced proximal promoter elements in the first 100 base pairs upstream of the TATA-box. To confirm the physiological significance of this in vitro analysis, in vivo DNase I footprinting experiments were carried out using the ligation-mediated polymerase chain reaction technique. The various cis-elements characterized in vitro as binding sites for known transcription factors and more particularly for liver-enriched transcription factors are efficiently recognized in vivo as well, suggesting that they play an important role in the control of the liver-specific vitellogenin gene B1 expression.
Resumo:
We wished to determine if chronic neuropeptide Y (NPY) infusion (1 ng/min for 1 week by Alzet minipump) could decrease plasma renin activity (PRA) and norepinephrine (NE) in a rat myocardial infarction (MI) model of moderate compensated congestive heart failure (CHF). CHF was produced by prior (6-8 weeks) ligation of the left coronary artery; control rats were sham-operated. Carotid arterial blood was drawn for PRA and NE in conscious unrestrained rats that had been instrumented 24 h earlier. MI rats had increased PRA as compared with sham-operated rats [8.73 +/- 1.27 vs. 5.10 +/- 0.91 ng angiotensin (AI) I/ml.h, mean +/- SE]. During chronic NPY infusion, PRA was reduced to normal in the MI group (4.78 +/- 0.91) but was not affected in the sham group (5.65 +/- 0.51). Plasma NE was altered similarly, but the changes did not reach statistical significance. These data suggest that NPY has the capacity to restrain renin release in moderate compensated CHF.
Resumo:
Résumé Le mammifère adulte possède des capacités de régénération tissulaire beaucoup plus limitées que celles des mammifères à l'âge foetal, ou d'autres vertébrés adultes comme les amphibiens urodèles et anuriens. Le mode de réparation tissulaire généralement utilisé par le mammifère adulte est la cicatrisation. Celle-ci suit un déroulement physio-pathologique très reproductible, qui a été le mieux décrit dans la peau, mais est également applicable à d'autres tissus comme le coeur en cas d'infarctus. Toutefois, le coeur de mammifère adulte semble posséder un certain potentiel régénérateur, bien qu'insuffisant pour réparer une lésion d'infarctus; en particulier, il contient des populations de cellules exprimant des marqueurs de surface des cellules souches hématopoiétiques comme l'antigène de cellules souches (stem cell antigen; Sca-1) ou le récepteur pour le facteur de cellules souches (stem cell factor; SCF), c-kit. Le comportement de ces cellules ressemble à de nombreux égards à celui de cellules souches adultes résidentes. D'autre part, un modèle mammifère adulte de régénération tissulaire, la souris NIRL, a été décrit ,récemment ; si cette souris répare. l'infarctus ischémique du ventricule gauche par cicatrisation, elle est par contre capable de régénérer complètement le myocarde après cryoinfarctus du ventricule droit, sans former la moindre cicatrice. Le but de cette thèse a été l'exploration par différentes approches des potentiels régénérateurs cardiaques après infarctus chez le mammifère adulte. La première approche choisie a été l'étude de la régénération myocardique chez la souris MRL. Il s'agissait de comprendre pourquoi la souris MRL régénère le coeur après cryoinfarctus du ventricule droit, et pas après infarctus ischémique du ventricule gauche, ainsi que d'élucider les mécanismes à la base de la régénération cardiaque chez cette souris. En utilisant le protocole original d'infarctus cryogénique du ventricule droit, nous n'avons pas observé de régénération cardiaque chez la souris MRL, qui a réparé l'infarctus par cicatrisation.- Nous avons ensuite modifié la sévérité du stimulus cryogénique, la localisation de la lésion cardiaque, et le type de lésion lui-même (infarctus ischémique induit par ligature coronarienne). En théorie, ces aspects expérimentaux sont les principaux facteurs pouvant influencer la réparation tissulaire. En utilisant cinq protocoles expérimentaux différents, nous n'avons pas observé de régénération cardiaque chez la souris MRL. Nous avons également analysé la prolifération cellulaire dans trois régions différentes du coeur à 15 et 40 jours après infarctus, et n'avons pas observé de différence entre la souris MRL et la souris contrôle C57B1/6. Quant à la composition en collagène de la cicatrice, elle est la même chez les deux souches de souris. Nos résultats ne peuvent donc pas confirmer la validité de ce modèle marin de régénération cardiaque récemment publié. Nous nous sommes alors tournés vers une deuxième approche d'étude du potentiel régénérateur du coeur de mammifère adulte, celle des cellules souches adultes résidentes. Nous avons isolé et purifié la population de cellules cardiaques qui expriment le marqueur de surface Sca-1 ;nous les avons maintenues en cultures pendant plusieurs dizaines de passages, et les avons ré-injectées dans le myocarde. Cette deuxième approche .ouvre la voie à l'étude de cellules souches cardiaques adultes candidates, ainsi qu'à la thérapie cellulaire de l'infarctus du myocarde. Summary Adult mammals possess limited tissue regeneration capacities as compared to foetal mammals or other adult vertebrates such as anurian and urodele amphibians. Usually, adult mammals heal tissues by scarring. The process of scarring is characterized by physiopathological events which have been best studied in skin; but which also occur in other organs like the heart. Nevertheless, the adult mammalian heart seems to possess a certain regenerative potential, though insufficient to efficiently repair infarct lesions. It indeed contains cell populations expressing haematopoietic stem cell surface markers such as Scat or c-kit. These cells behave in many ways like resident adult. stem cells. On the other hand; an adult mammalian model of tissue regeneration, the MRL mouse, has been recently described; although this mouse repairs an ischemic infarct of the left ventricle by scarring, it is able of fully regenerating a cryoinfarction of the right ventricle without scanning . The goal of this thesis was to explore the regenerative potential of the adult mammalian heart after infarction by using different approaches. A first approach was to study the myocardial regeneration in the MRL mouse. It was about understanding why this mouse regenerates a right ventricular cryoinfarction and not an ischemic infarction of the left ventricle, as well as elucidating the mechanisms underlying myocardial regeneration in this model. By using the original protocol of right ventricular cryoinfarction, we did not observe any heart regeneration in the MRL mouse, which healed the infarct by scarring. We then modified the intensity of the cryogenic stimulus, the site of lesion, and -the type of lesion itself (ischemic infarction by coronary artery ligation). In theory, these experimental aspects are the main factors likely to influence tissue repair. Although. we used five different protocols, we did not observe any regeneration in the MRL mouse. We also analysed cell proliferation in three different regions of the heart, at 15 and 40 days after infarction, and did not see any difference between the MRL and C57B1/6 mouse. Collagen content of the scar was shown to be the same in both strains. Our results cannot confirm the validity of this recently published model. We then chose another way to study the adult mammalian heart regenerative potential, by taking the adult resident stem cells approach. We isolated and purified a cardiac cell population expressing the Sca-1 surface marker; we kept these cells in culture for over 30 passages, and re-injected them into the myocardium. This second approach opens the way to candidate adult cardiac stem cell study, as well as cell therapy.
Resumo:
Members of the tumor necrosis factor (TNF) family play key roles in the regulation of inflammation, immune responses and tissue homeostasis. Here we describe the identification of the chicken homologue of mammalian B cell activating factor of the TNF family (BAFF/BLyS). By searching a chicken EST database we identified two overlapping cDNA clones that code for the entire open reading frame of chicken BAFF (chBAFF), which contains a predicted transmembrane domain and a putative furin protease cleavage site like its mammalian counterparts. The amino acid identity between soluble chicken and human BAFF is 76%, considerably higher than for most other known cytokines. The chBAFF gene is most strongly expressed in the bursa of Fabricius. Soluble recombinant chBAFF produced by human 293T cells interacted with the mammalian cell-surface receptors TACI, BCMA and BAFF-R. It bound to chicken B cells, but not to other lymphocytes, and it promoted the survival of splenic chicken B cells in culture. Furthermore, bacterially expressed chBAFF induced the selective expansion of B cells in the spleen and cecal tonsils when administered to young chicks. Our results suggest that like its mammalian counterpart, chBAFF plays an important role in survival and/or proliferation of chicken B cells.
Resumo:
Integrin receptors are the main mediators of cell adhesion to the extracellular matrix. They bind to their ligands by interacting with short amino acid sequences, such as the RGD sequence. Soluble, small RGD-based peptides have been used to block integrin-binding to ligands, thereby interfering with cell adhesion, migration and survival, while substrate-immobilized RGD sequences have been used to enhance cell binding to artificial surfaces. This approach has several important medical applications, e.g. in suppression of tumor angiogenesis or stimulation of bone formation around implants. However, the relatively weak affinity of short RGD-containing peptides often results in incomplete integrin inhibition or ineffective ligation. In this work, we designed and synthesized several new multivalent RGD-containing molecules and tested their ability to inhibit or to promote integrin-dependent cell adhesion when used in solution or immobilized on substrates, respectively. These molecules consist of an oligomeric structure formed by alpha-helical coiled coil peptides fused at their amino-terminal ends with an RGD-containing fragment. When immobilized on a substrate, these peptides specifically promoted integrin alphaVbeta3-dependent cell adhesion, but when used in solution, they blocked alphaVbeta3-dependent cell adhesion to the natural substrates fibronectin and vitronectin. One of the peptides was nearly 10-fold more efficient than fibronectin or vitronectin in promoting cell adhesion, and almost 100-fold more efficient than a linear RGD tripeptide in blocking adhesion. These results indicate that alpha-helical coiled coil peptides carrying an amino-terminal RGD motif can be used as soluble antagonists or surface-immobilized agonists to efficiently inhibit or promote integrin alphaVbeta3-mediated cell adhesion, respectively.
Resumo:
Résumé : Malgré les immenses progrès réalisés depuis plusieurs années en médecine obstétricale ainsi qu'en réanimation néonatale et en recherche expérimentale, l'asphyxie périnatale, une situation de manque d'oxygène autour du moment de la naissance, reste une cause majeure de mortalité et de morbidité neurologique à long terme chez l'enfant (retard mental, paralysie cérébrale, épilepsie, problèmes d'apprentissages) sans toutefois de traitement pharmacologique réel. La nécessité de développer de nouvelles stratégies thérapeutiques pour les complications de l'asphyxie périnatale est donc aujourd'hui encore essentielle. Le but général de ce travail est l'identification de nouvelles cibles thérapeutiques impliquées dans des mécanismes moléculaires pathologiques induits par l'hypoxie-ischémie (HI) dans le cerveau immature. Pour cela, le modèle d'asphyxie périnatale (proche du terme) le plus reconnu chez le rongeur a été développé (modèle de Rice et Vannucci). Il consiste en la ligature permanente d'une artère carotide commune (ischémie) chez le raton de 7 jours combinée à une période d'hypoxie à 8% d'oxygène. Il permet ainsi d'étudier les lésions de type hypoxique-ischémique dans différentes régions cérébrales dont le cortex, l'hippocampe, le striatum et le thalamus. La première partie de ce travail a abordé le rôle de deux voies de MAPK, JNK et p38, après HI néonatale chez le raton à l'aide de peptides inhibiteurs. Tout d'abord, nous avons démontré que D-JNKI1, un peptide inhibiteur de la voie de JNK présentant de fortes propriétés neuroprotectrices dans des modèles d'ischémie cérébrale adulte ainsi que chez le jeune raton, peut intervenir sur différentes voies de mort dont l'activation des calpaïnes (marqueur de la nécrose précoce), l'activation de la caspase-3 (marqueur de l'apoptose) et l'expression de LC3-II (marqueur de macroautophagie). Malgré ces effets positifs le traitement au D-JNKI1 ne modifie pas l'étendue de la lésion cérébrale. L'action limitée de D-JNKI1 peut s'expliquer par une implication modérée des JNKs (faiblement activées et principalement l'isotype JNK3) après HI néonatale sévère. Au contraire, l'inhibition de la voie de nNOS/p38 par le peptide DTAT-GESV permet une augmentation de 20% du volume du tissu sain à court et long terme. Le second projet a étudié les effets de l'HI néonatale sur l'autophagie neuronale. En effet, l'autophagie est un processus catabolique essentiel au bien-être de la cellule. Le type principal d'autophagie (« macroautophagie » , que nous appellerons par la suite « autophagie ») consiste en la séquestration d'éléments à dégrader (protéines ou organelles déficients) dans un compartiment spécialisé, l'autophagosome, qui fusionne avec un lysosome pour former un autolysosome où le contenu est dégradé par les hydrolases lysosomales. Depuis peu, l'excès ou la dérégulation de l'autoptiagie a pu être impliqué dans la mort cellulaire en certaines conditions de stress. Ce travail démontre que l'HI néonatale chez le raton active fortement le flux autophagique, c'est-à-dire augmente la formation des autophagosomes et des autolysosomes, dans les neurones en souffrance. De plus, la relation entre l'autophagie et l'apoptose varie selon la région cérébrale. En effet, alors que dans le cortex les neurones en voie de mort présentent des caractéristiques mixtes apoptotiques et autophagiques, ceux du CA3 sont essentiellement autophagiques et ceux du CA1 sont principalement apoptotiques. L'induction de l'autophagie après HI néonatale semble donc participer à la mort neuronale soit par l'enclenchement de l'apoptose soit comme mécanisme de mort en soi. Afin de comprendre la relation pouvant exister entre autophagie et apoptase un troisième projet a été réalisé sur des cultures primaires de neurones corticaux exposés à un stimulus apoptotique classique, la staurosporine (STS). Nous avons démontré que l'apoptose induite par la STS était précédée et accompagnée par une forte activation du flux autophagique neuronal. L'inhibition de l'autophagie de manière pharmacologique (3-MA) ou plus spécifiquement par ARNs d'interférence dirigés contre deux protéines autophagiques importantes (Atg7 et Atg5) a permis de mettre en évidence des rôles multiples de l'autophagie dans la mort neuronale. En effet, l'autophagie prend non seulement part à une voie de mort parallèle à l'apoptose pouvant être impliquée dans l'activation des calpaïnes, mais est également partiellement responsable de l'induction des voies apoptotiques (activation de la caspase-3 et translocation nucléaire d'AIF). En conclusion, ce travail a montré que l'inhibition de JNK par D-JNKI1 n'est pas un outil neuroprotecteur efficace pour diminuer la mort neuronale provoquée par l'asphyxie périnatalé sévère, et met en lumière deux autres voies thérapeutiques beaucoup plus prometteuses, l'inhibition de nNOS/p38 ou de l'autophagie. ABSTRACT : Despite enormous progress over the last«decades in obstetrical and neonatal medicine and experimental research, perinatal asphyxia, a situation of lack of oxygen around the time of the birth, remains a major cause of mortality and long term neurological morbidity in children (mental retardation, cerebral palsy, epilepsy, learning difficulties) without any effective treatment. It is therefore essential to develop new therapeutic strategies for the complications of perinatal asphyxia. The overall aim of this work was to identify new therapeutic targets involved in pathological molecular mechanisms induced by hypoxia-ischemia (HI) in the immature brain. For this purpose, the most relevant model of perinatal asphyxia (near term) in rodents has been developed (model of Rice and Vannucci). It consists in the permanent ligation of one common carotid artery (ischemia) in the 7-day-old rat combined with a period of hypoxia at 8% oxygen. This model allows the study of the hypoxic-ischemic lesion in different brain regions including the cortex, hippocampus, striatum and thalamus. The first part of this work addressed the role of two MAPK pathways (JNK and p38) after rat neonatal HI using inhibitory peptides. First, we demonstrated that D-JNKI1, a JNK peptide inhibitor presenting strong neuroprotective properties in models of cerebral ischemia in adult and young rats, could affect different cell death mechanisms including the activation of calpain (a marker of necrosis) and caspase-3 (a marker of apoptosis), and the expression of LC3-II (a marker of macroautophagy). Despite these positive effects, D-JNKI1 did not modify the extent of brain damage. The limited action of D-JNKI1 can be explained by the fact that JNKs were only moderately involved (weakly activated and principally the JNK3 isotype) after severe neonatal HI. In contrast, inhibition of nNOS/p38 by the peptide D-TAT-GESV increased the surviving tissue volume by around 20% at short and long term. The second project investigated the effects of neonatal HI on neuronal autophagy. Indeed, autophagy is a catabolic process essential to the well-being of the cell. The principal type of autophagy ("macroautophagy", that we shall henceforth call "autophagy") involves the sequestration of elements to be degraded (deficient proteins or organelles) in a specialized compartment, the autophagosome, which fuses with a lysosome to form an autolysosome where the content is degraded by lysosomal hydrolases. Recently, an excess or deregulation of autophagy has been implicated in cell death in some stress conditions. The present study demonstrated that rat neonatal HI highly enhanced autophagic flux, i.e. increased autophagosome and autolysosome formation, in stressed neurons. Moreover, the relationship between autophagy and apoptosis varies according to the brain region. Indeed, whereas dying neurons in the cortex exhibited mixed features of apoptosis and autophagy, those in CA3 were primarily autophagíc and those in CA1 were mainly apoptotic. The induction of autophagy after neonatal HI seems to participate in neuronal death either by triggering apoptosis or as a death mechanism per se. To understand the relationships that may exist between autophagy and apoptosis, a third project has been conducted using primary cortical neuronal cultures exposed to a classical apoptotic stimulus, staurosporine (STS). We demonstrated that STS-induced apoptosis was preceded and accompanied by a strong activation of neuronal autophagic flux. Inhibition of autophagy pharmacologically (3-MA) or more specifically by RNA interference directed against two important autophagic proteins (Atg7 and AtgS) showed multiple roles of autophagy in neuronal death. Indeed, autophagy was not only involved in a death pathway parallel to apoptosis possibly involved in the activation of calpains, but was also partially responsible for the induction of apoptotic pathways (caspase-3 activation and AIF nuclear translocation). In conclusion, this study showed that JNK inhibition by D-JNKI1 is not an effective neuroprotective tool for decreasing neuronal death following severe perinatal asphyxia, but highlighted two more promising therapeutic approaches, inhibition of the nNOSlp38 pathway or of autophagy.
Resumo:
PURPOSE: O6-methylguanine-methyltransferase (MGMT) promoter methylation has been shown to predict survival of patients with glioblastomas if temozolomide is added to radiotherapy (RT). It is unknown if MGMT promoter methylation is also predictive to outcome to RT followed by adjuvant procarbazine, lomustine, and vincristine (PCV) chemotherapy in patients with anaplastic oligodendroglial tumors (AOT). PATIENTS AND METHODS: In the European Organisation for the Research and Treatment of Cancer study 26951, 368 patients with AOT were randomly assigned to either RT alone or to RT followed by adjuvant PCV. From 165 patients of this study, formalin-fixed, paraffin-embedded tumor tissue was available for MGMT promoter methylation analysis. This was investigated with methylation specific multiplex ligation-dependent probe amplification. RESULTS: In 152 cases, an MGMT result was obtained, in 121 (80%) cases MGMT promoter methylation was observed. Methylation strongly correlated with combined loss of chromosome 1p and 19q loss (P = .00043). In multivariate analysis, MGMT promoter methylation, 1p/19q codeletion, tumor necrosis, and extent of resection were independent prognostic factors. The prognostic significance of MGMT promoter methylation was equally strong in the RT arm and the RT/PCV arm for both progression-free survival and overall survival. In tumors diagnosed at central pathology review as glioblastoma, no prognostic effect of MGMT promoter methylation was observed. CONCLUSION: In this study, on patients with AOT MGMT promoter methylation was of prognostic significance and did not have predictive significance for outcome to adjuvant PCV chemotherapy. The biologic effect of MGMT promoter methylation or pathogenetic features associated with MGMT promoter methylation may be different for AOT compared with glioblastoma.
Resumo:
BACKGROUND: Clinical studies suggest that transmyocardial laser revascularization may improve regional blood flow of the subendocardial layer. The vascular growth pattern of laser channels was analyzed. METHODS: Twenty pigs were randomized to undergo ligation of left marginal arteries (n = 5), to undergo transmyocardial laser revascularization of the left lateral wall (n = 5), to undergo both procedures (n = 5) or to a control group (n = 5). All the animals were sacrificed after 1 month. Computed morphometric analysis of vascular density of the involved area was expressed as number of vascular structures per square millimeter (+/-1 standard deviation). RESULTS: The vascular density of the scar tissue of the laser channel was significantly increased in comparison with myocardial infarction alone: 49.6+/-12.8/mm2 versus 25.5+/-8.6/mm2 (p < 0.0001). The vascular densities of subendocardial and subepicardial channel areas were similar: 52.9+/-16.8/mm2 versus 46.3+/-13.6/mm2 (p = 0.41). The area immediately adjacent to the channels showed a vascular density similar to that of normal tissue: 6.02+/-1.7/mm2 versus 5.2+/-1.9/mm2 (p = 0.08). In the infarction + transmyocardial laser revascularization group, the channels were indistinguishable from infarction scar. CONCLUSIONS: Scars of transmyocardial laser revascularization channels exhibit an increased vascular density in comparison with scar tissue of myocardial infarction, which does not extend into their immediate vicinity. There was no vascular density gradient along the longitudinal axis of the channels.
Resumo:
OBJECTIVE: Recent pharmacologic studies in our laboratory have suggested that the spinal neuropeptide Y (NPY) Y1 receptor contributes to pain inhibition and to the analgesic effects of NPY. To rule out off-target effects, the present study used Y1-receptor-deficient (-/-) mice to further explore the contribution of Y1 receptors to pain modulation. METHODS AND RESULTS: Y1(-/-) mice exhibited reduced latency in the hotplate test of acute pain and a longer-lasting heat allodynia in the complete Freund's adjuvant (CFA) model of inflammatory pain. Y1 deletion did not change CFA-induced inflammation. Upon targeting the spinal NPY systems with intrathecal drug delivery, NPY reduced tactile and heat allodynia in the CFA model and the partial sciatic nerve ligation model of neuropathic pain. Importantly, we show for the first time that NPY does not exert these anti-allodynic effects in Y1(-/-) mice. Furthermore, in nerve-injured CD1 mice, concomitant injection of the potent Y1 antagonist BIBO3304 prevented the anti-allodynic actions of NPY. Neither NPY nor BIBO3304 altered performance on the Rotorod test, arguing against an indirect effect of motor function. CONCLUSION: The Y1 receptor contributes to pain inhibition and to the analgesic effects of NPY.