641 resultados para CAMERAS
Resumo:
Introduction: The sport practiced by people with disabilities has been growing in recent years. Consequently, advances in assessment and training methods have emerged. However, the paralympic sport keeps in tow these advances, with few specific studies that consider disability as intervening factor. The transcranial direct current stimulation (tDCS) is a technique that has proven to be capable of modulating brain function. Studies show beneficial effects of tDCS on muscle strength, power and fatigue during exercise. Objective: Investigate de the effect of tDCS on movement control in para-powerlifters. Methods: Eight subjects underwent two sessions of motion capture, which previously applied the anodic tDCS or sham sessions in the cerebellum. Three movements were performed with increasing load between 90-95% of 1MR. The movements were recorded by an 10 infrared cameras system which reconstructed the 3D trajectory of markers placed on the bar. Results: There have been changes between the anodic and sham conditions over bar level (initial, final, maximum during the eccentric and concentric phase) and in the difference between the final and initial bar level. Moreover, there was difference in bar level (final and during the eccentric phase) comparing athletes amputees and les autres. Conclusion: The findings of this study suggest that tDCS applied prior to the exercise over the cerebellum in para-powerlifters acts differently according to disability
Resumo:
This dissertation describes the use of new Technologies of the Areas of Telecommunications, Networks and Industrial Automation for increase of the Operational Safety and obtaining of Operational Improvements in the Platforms Petroliferous Offshore. The presented solution represents the junction of several modules of these areas, making possible the Supervision and Contrai of the Platforms Petroliferous Offshore starting from an Station Onshore, in way similar to a remote contral, by virtue of the visualization possibility and audition of the operational area through cameras and microphones, looking the operator of the system to be "present" in the platform. This way, it diminishes the embarked people's need, increasing the Operational Safety. As consequence, we have the obtaining of Operational Improvements, by virtue of the use of a digital link of large band it releases multi-service. In this link traffic simultaneously digital signs of data (Ethernet Network), telephony (Phone VoIP), image and sound
Resumo:
Large efforts have been maden by the scientific community on tasks involving locomotion of mobile robots. To execute this kind of task, we must develop to the robot the ability of navigation through the environment in a safe way, that is, without collisions with the objects. In order to perform this, it is necessary to implement strategies that makes possible to detect obstacles. In this work, we deal with this problem by proposing a system that is able to collect sensory information and to estimate the possibility for obstacles to occur in the mobile robot path. Stereo cameras positioned in parallel to each other in a structure coupled to the robot are employed as the main sensory device, making possible the generation of a disparity map. Code optimizations and a strategy for data reduction and abstraction are applied to the images, resulting in a substantial gain in the execution time. This makes possible to the high level decision processes to execute obstacle deviation in real time. This system can be employed in situations where the robot is remotely operated, as well as in situations where it depends only on itself to generate trajectories (the autonomous case)
Resumo:
This work proposes a method to determine the depth of objects in a scene using a combination between stereo vision and self-calibration techniques. Determining the rel- ative distance between visualized objects and a robot, with a stereo head, it is possible to navigate in unknown environments. Stereo vision techniques supply a depth measure by the combination of two or more images from the same scene. To achieve a depth estimates of the in scene objects a reconstruction of this scene geometry is necessary. For such reconstruction the relationship between the three-dimensional world coordi- nates and the two-dimensional images coordinates is necessary. Through the achievement of the cameras intrinsic parameters it is possible to make this coordinates systems relationship. These parameters can be gotten through geometric camera calibration, which, generally is made by a correlation between image characteristics of a calibration pattern with know dimensions. The cameras self-calibration allows the achievement of their intrinsic parameters without using a known calibration pattern, being possible their calculation and alteration during the displacement of the robot in an unknown environment. In this work a self-calibration method based in the three-dimensional polar coordinates to represent image features is presented. This representation is determined by the relationship between images features and horizontal and vertical opening cameras angles. Using the polar coordinates it is possible to geometrically reconstruct the scene. Through the proposed techniques combination it is possible to calculate a scene objects depth estimate, allowing the robot navigation in an unknown environment
Resumo:
The development of wireless sensor networks for control and monitoring functions has created a vibrant investigation scenario, covering since communication aspects to issues related with energy efficiency. When source sensors are endowed with cameras for visual monitoring, a new scope of challenges is raised, as transmission and monitoring requirements are considerably changed. Particularly, visual sensors collect data following a directional sensing model, altering the meaning of concepts as vicinity and redundancy but allowing the differentiation of source nodes by their sensing relevancies for the application. In such context, we propose the combined use of two differentiation strategies as a novel QoS parameter, exploring the sensing relevancies of source nodes and DWT image coding. This innovative approach supports a new scope of optimizations to improve the performance of visual sensor networks at the cost of a small reduction on the overall monitoring quality of the application. Besides definition of a new concept of relevance and the proposition of mechanisms to support its practical exploitation, we propose five different optimizations in the way images are transmitted in wireless visual sensor networks, aiming at energy saving, transmission with low delay and error recovery. Putting all these together, the proposed innovative differentiation strategies and the related optimizations open a relevant research trend, where the application monitoring requirements are used to guide a more efficient operation of sensor networks
Resumo:
Fuzzy intelligent systems are present in a variety of equipment ranging from household appliances to Fuzzy intelligent systems are present in a variety of equipment ranging from household appliances to small devices such as digital cameras and cell phones being used primarily for dealing with the uncertainties in the modeling of real systems. However, commercial implementations of Fuzzy systems are not general purpose and do not have portability to different hardware platforms. Thinking about these issues this work presents the implementation of an open source development environment that consists of a desktop system capable of generate Graphically a general purpose Fuzzy controller and export these parameters for an embedded system with a Fuzzy controller written in Java Platform Micro Edition To (J2ME), whose modular design makes it portable to any mobile device that supports J2ME. Thus, the proposed development platform is capable of generating all the parameters of a Fuzzy controller and export it in XML file, and the code responsible for the control logic that is embedded in the mobile device is able to read this file and start the controller. All the parameters of a Fuzzy controller are configurable using the desktop system, since the membership functions and rule base, even the universe of discourse of the linguistic terms of output variables. This system generates Fuzzy controllers for the interpolation model of Takagi-Sugeno. As the validation process and testing of the proposed solution the Fuzzy controller was embedded on the mobile device Sun SPOT ® and used to control a plant-level Quanser®, and to compare the Fuzzy controller generated by the system with other types of controllers was implemented and embedded in sun spot a PID controller to control the same level plant of Quanser®
Resumo:
Navigation based on visual feedback for robots, working in a closed environment, can be obtained settling a camera in each robot (local vision system). However, this solution requests a camera and capacity of local processing for each robot. When possible, a global vision system is a cheapest solution for this problem. In this case, one or a little amount of cameras, covering all the workspace, can be shared by the entire team of robots, saving the cost of a great amount of cameras and the associated processing hardware needed in a local vision system. This work presents the implementation and experimental results of a global vision system for mobile mini-robots, using robot soccer as test platform. The proposed vision system consists of a camera, a frame grabber and a computer (PC) for image processing. The PC is responsible for the team motion control, based on the visual feedback, sending commands to the robots through a radio link. In order for the system to be able to unequivocally recognize each robot, each one has a label on its top, consisting of two colored circles. Image processing algorithms were developed for the eficient computation, in real time, of all objects position (robot and ball) and orientation (robot). A great problem found was to label the color, in real time, of each colored point of the image, in time-varying illumination conditions. To overcome this problem, an automatic camera calibration, based on clustering K-means algorithm, was implemented. This method guarantees that similar pixels will be clustered around a unique color class. The obtained experimental results shown that the position and orientation of each robot can be obtained with a precision of few millimeters. The updating of the position and orientation was attained in real time, analyzing 30 frames per second
Resumo:
The standardization of the bovine skin thickness in the leather industry generates a residue known as wet-blue . At the end of twentieth century, the brazilian industry discarded about 131 thousand tons of this residue in nature, provoking a great environmental liability. In this paper is presented the analyses of the termophysical properties, thermal and volumetric expansion performance of a composite of vegetable resin of castor oil plant (Ricinus communis) with load of industrial residue of leather "wet-blue", for application as thermal isolation material of warm surfaces. There were considered four percentile levels of residue load in the proportions in mass of 0%, 5%, 10% and 15%, added to the expansible resin of castor oil plant in two configurations: sawed leather and crushed leather in a smaller particle (powder) by grinding in a mill of balls. Twenty-one proof bodies were produced for termophysical properties analysis (three for each configuration) and four proof bodies for rehearsals of thermal acting. Analyses of thermal acting were done in test cameras. The results of the rehearsals were compared to those obtained considering the castor oil plant foam without residue addition. A small reduction of the thermal conductivity of the composite was observed in the proportion of 10% of leather residue in both configurations. Regarding thermal conductivity, calorific capacity and diffusivity, it was verified that the proposed composite showed very close values to the commercial insulating materials (glass wool, rock wool, EPS). It was still demonstrated the technical viability of the use of composite as insulating thermal for systems of low potency. The composite presented larger volumetric expansion with 15% of sawed residue of leather.
Resumo:
Os fungos fitopatogênicos habitantes do solo podem sobreviver por vários anos nesse ambiente por meio de estruturas de resistência, causando perdas em muitas culturas, por vezes, inviabilizando o pleno aproveitamento de vastas áreas agrícolas. O uso de materiais orgânicos no solo consorciado com a técnica de solarização propicia a retenção de compostos voláteis fungitóxicos emanados da rápida degradação dos materiais e que são letais a vários fitopatógenos. O objetivo deste experimento foi à prospecção de novos materiais orgânicos que produzissem voláteis fungitóxicos capazes de controlar fungos fitopatogênicos habitantes do solo, em condições de associação com a simulação da técnica de solarização (microcosmo). Portanto, o presente trabalho consistiu de seis tratamentos (Solarizado; Solarizado+Brócolos; Solarizado+Eucalipto; Solarizado+Mamona; Solarizado+Mandioca e Laboratório) e cinco períodos (0, 7, 14, 21 e 28 dias) para avaliar a sobrevivência de quatro fungos de solo (Fusarium oxysporum f. sp. lycopersici Raça 2; Macrophomina phaseolina; Rhizoctonia solani AG-4 HGI e Sclerotium rolfsii). em cada uma das duas câmaras de vidro (microcosmo) por dia avaliado continha uma bolsa de náilon contendo as estruturas de resistência de cada fitopatógeno. Estruturas dos fitopatógenos foram mantidas também em condições de laboratório como referencial de controle. Todos os materiais quando associados à simulação da solarização propiciaram o controle de todos os fitopatógenos estudados, entretanto, foi observado variação no controle dos fungos. O tratamento que apenas simulou a solarização não controlou nenhum fitopatógeno.
Resumo:
In the urban areas of the cities a larger problem of destiny of effluents of the treatment stations is verified due to the junction of the sewages in great volumes. This way the hidroponic cultive becomes important, for your intensive characteristic, as alternative of reuse. This work presents as objective the improvement of the relation hidric-nutritious of the hidroponic cultive of green forage (FVH) using treaty sewage. The production of forage was with corn (Zea mays L.), using double hybrid AG1051, in the experimental field of the Federal University of Rio Grande do Norte (UFRN), in the city of Natal-RN-Brazil. The treated effluent essentially domestic had origin of anaerobic reactor, type decant-digester of two cameras in series followed by anaerobic filters drowned. The hidroponic experimental system was composed of 08 stonemasons, with limited contours for masonry of drained ceramic brick, measuring each one 2,5 meters in length for 1,0 meter of width, with inclination of 4% (m/m) in the longitudinal sense, leveled carefully, in way to not to allow preferential roads in the flow. These dimensions, the useful area of Isow was of 2 square meters. The stonemasons of cultive were waterproof (found and lateral) with plastic canvas of 200 micres of thickness, in the white color. Controlled the entrance and exit of the effluente in the stonemasons, with cycles of 12,68 minutes, it being water of 1,18 minutes. The treatments were constituted of: T1 - 24 hours/day under it waters with flow of 2 L/min; T2 - 12 hours/day under waters with flow of 4 L/min; T3 - 12 hours/day under waters with flow of 2 L/min; and T4 - 16 hours/day under waters with flow of 3 L/min. There were evaluations of the evapotranspirometric demand, of hidroponic system affluent and effluent seeking to characterize and to monitor physical-chemical parameters as: pH, temperature, Electric Conductivity and Fecal Coliforms. This last one was analyzed to the 11 days after isow (DAS) and to the 14 DAS. The others were analyzed daily. I sow it was accomplished in the dates of February 21, 2007, first experiment, and April 10, 2007, second experiment. The density of Isow was of 2 kg of seeds, germinated before 48 hours, for square meter of stonemason. The statistic delineament was it casual entirely with two repetitions, in two experiments. It was applied Tukey test of average to five percent of probability. The cultivation cycle was of 14 DAS with evapotranspirometric demand maximum, reached by T1, of 67,44 mm/day. The analyzed parameters, as mass of green matter - Kg, productivity-Kg/m2 and reason of production of seed FVH/Kg used in Isow, the best result was presented by T1, obtaining value of up to 19,01 Kg/m2 of cultive. Without significant difference, the T4 presented greats values with 16 hours under cycle of water. The Treatments 2 and 3 with 12 hours under cycle of water, they obtained inferior results to the other Treatments. As treatment system, came efficient in the reduction of the salinity. T1 obtained reduction medium maxim of 62,5%, to the 7 DAS, in the amount of salts that enter in the system in they are absorbed in the cultivation. The cultivation FVH acted reducing the microbiologic load. Significant percentile of reduction they were reached, with up to 90,23% of reduction of Units of Colonies (UFC), constituting, like this, the Hidroponic System as good alternative of treatment of effluents of Reactors of high Efficiency
Resumo:
In general, a land-based mobile mapping system is featured by a vehicle with a pair of video cameras mounted on the top and positioning and navigation sensors loaded in the vehicle. Considering the pair of video cameras mounted on the roof of the vehicle as a stereo camera pointing forward with both optical axes parallel to each other and orthogonal to the stereo base, whose length is 0.94 m, this paper aims at analyzing the interior and exterior camera orientation and the object point coordinates estimated by phototriangulation when the length constraint related to the stereo base is considered or not. The results show that the stereo base constraint has effect ouver the convergence estimation, but does it neither improves the object point coordinate estimation at significance level of 5% and nor it influences the interior orientation parameters. Finally, it has been noticed that the optical axes are not truly parallel to each other and orthogonal to the stereo base. Additionally, it has been observed that there is a convergence of approximately 0.5 degrees in the optical axes and they are not in the same plane (approximately 0.8 degrees deviation).
Resumo:
Considering the growing use of digital cameras in Photogrammetric projects, especially in aerial survey, this paper presents tests and analyses of bundle block adjustment with additional parameters, using different mathematical models, and blocks of images acquired by the SAAPI digital acquisition system. Three blocks of images were processed by the LPS (Leica Photogrammetry Suite) software, in which five groups of additional parameters (AP) can be used: Bauer, Jacobsen, Ebner, Brown and Lens distortion. These AP's models were employed in the bundle block adjustment, and the results were analyzed based on the accuracy of the checking points and on the changes in these additional parameters. The obtained results showed that the Lens Distortion model allowed the best results.
Resumo:
Image acquisition systems based on multi-head arrangement of digital frame cameras, such as the commercial systems DMC, UltraCam, besides others, are attractive alternatives enabling larger imaging area when compared to a single frame camera. Considering that in these systems, cameras are tightly attached to an external mount, it is assumed that relative position and orientation between cameras are stable during image acquisition and, consequently, these constraint can be included in the calibration step. This constraint is acceptable because estimates of the relative orientation (RO) parameters between cameras, from previously estimated exterior orientation parameters, present higher and significant deviations than the expected physical variations, due to error propagation. In order to solve this problem, this work presents an approach based on simultaneous calibration of two or more cameras using constraints that state that the relative rotation matrix and the distance between the cameras head are stable. Experiments with images acquired by an arrangement of two Hasselblad H2D cameras were accomplished, without and with the mentioned constraints. The experiments showed that the calibration process with RO constraints allows better results than the approach based on single camera calibration, provided that the estimation has included only images with good target distribution.
Resumo:
Based on analyses of high-speed video recordings of cloud-to-ground lightning in Brazil and the USA, the characteristics of positive cloud-to-ground (+CG) leaders are presented. The high frame rates permitted the average, 2-dimensional speeds of development along the paths of the channels to be resolved with good accuracy. The values range from 0.3 to 6.0 x 10(5) ms(-1) with a mean of 2.7 x 10(5) ms(-1). Contrary to what is usually assumed, downward +CG leader speeds are similar to downward -CG leader speeds. Our observations also show that the speeds tend to increase by a factor of 1.1 to 6.5 as they approach the ground. The presence of short duration, recoil leaders (RLs) during the development of positive leaders reveal a highly branched structure that is not usually recorded when using conventional photographic and video cameras. The existence of the RLs may help to explain observations of UHF-VHF radiation during the development of +CG flashes.
Resumo:
The intensification of the fear in the city and in the spaces controlled by this feeling has contributed to a growing socio-spatial inequality, and the rapid growth of market protection. The residential condos emerge as a possible solution to the problem. This is a housing typology expanding worldwide which is seen, especially by the urban middle class, as enablers of quality of life and safety. In Brazil, especially in large cities, the quest for quality of life is directly connected with the desire for security translated through space control (use of high walls, gates, entrance hall, security cameras) and people who use it. This thesis aims at investigating how the different categories of inhabitants of an area predominantly occupied by vertical residential condos realize the socio-spatial dimension and the socio-urban space determined by this type of development. It especially takes into consideration the issue of urban insecurity, based on the assumption that, although published and sold by marketing as safe places , synonym of welfare and supporters of community life , the living in these condos, may even inhibits, social relationships, contributing to socio-spatial isolation and consequent social weakness. This is a survey that seeks to meet the assumptions of Environmental Psychology towards the comprehension of person-environment studies, emphasizing the use of different methods (desk research, observations of and group interviews, focus group technique using photographic resources), as well as the focus on current problems of the urban scene and the knowledge gained in Social Psychology