911 resultados para Building materials.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of binders in the soil for the production of solid bricks is an old construction technique that has been used by several civilizations over time. At the same time, the need for environmental preservation and the tendency of scarcity of natural resources make the construction invest in researching new concepts, methods and materials for building systems for the sustainability of their economic activities. Thus arises the need to obtain building materials with low power consumption, capable of reducing the growing housing shortage of rural and urban population. Currently, research has been conducted on this topic to better understand the cementitious and pozzolanic reactions that occur in the formation of the microstructure of the soil-cement when added to other materials such as, for example, lime, and the relationship between microstructure and formed interfaces with the physical, mechanical and chemical analysis in compounds made from these ternary compositions. In this context, this study aimed to analyze the results of the influence of the incorporation of lime to the soil-cement to form a ternary mixture to produce soil-cement bricks and mortar without structural purposes. From the inclusion of contents of 6 %, 8 %, 10% and 12% lime to the soil, and soil-cement mixes in amounts of 2 %, 3 %, 4 % and 5 % were shaped-bodies of -cylindrical specimens to determine the optimum moisture content and maximum dry apparent specific weight. Then they were cured, and subjected to the tests of compressive strength, absorption and durability modified. Compositions obtained the best results in the tests performed on the bodies-of-proof cylindrical served as a parameter for molding of solid bricks, which underwent the same experimental methodology previously cited. The raw materials used, as well as compositions in which the bricks were molded solid, were characterized by physical and chemical tests, X-ray diffraction and scanning electron microscopy. The results obtained in the study indicate that the compositions studied, that showed the best results in terms of compressive strength, water absorption and durability ternary composition was soil, 10 % cement and 2 % lime

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of gypsum, one of the oldest building materials for the construction industry in the country has been experiencing a significant and steady growth, due to its low cost and some of its properties that confer comparative advantage over other binder materials. Its use comprises various applications including the coating of walls and the production of internal seals and linings. Moreover, the fibers are being increasingly incorporated into arrays fragile in an attempt to improve the properties of the composite by reducing the number of cracks, the opening of the same and its propagation velocity. Other properties, depending on the function of the component material or construction, among these thermal and acoustic performances, are of great importance in the context of buildings and could be improved, that is, having better performance with this embodiment. Conduct a comparative study of physico-mechanical, thermal and acoustic composite gypsum incorporating dry coconut fiber, in the form of blanket, constituted the main objective of this work. Improving the thermal and acoustic performances of precast gypsum, used for lining and internal vertical fences of buildings, was the purpose of development of these composites. To evaluate the effect of fiber content on the properties of the composites were used to manufacture the composite layer with different thicknesses. The composites were fabricated in the form of plates with dimensions of 500x500x24mm. To facilitate the comparative study of the properties were also made with material gypsum boards only. We then determined the physico-mechanical, thermal and acoustical plaster and composites. The results indicated that the composites were significant gains in relation to thermal performance and also acoustic, in certain frequency range, increasing the thickness of the blanket. Concerning other physical-mechanical properties, the results showed that although the compressive strength was lower than for the composite did not occur after a fracture catastrophic failure. The same trend was observed with regard to resistance to bending, since the composites have not suffered sudden rupture and still continued after the load supporting point of maximum load

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The primary cementing is an important step in the oilwell drilling process, ensuring the mechanical stability of the well and the hydraulic isolation between casing and formation. For slurries to meet the requirements for application in a certain well, some care in the project should be taken into account to obtain a cement paste with the proper composition. In most cases, it is necessary to add chemicals to the cement to modify its properties, according to the operation conditions and thus obtain slurries that can move inside the jacket providing a good displacement to the interest area. New technologies of preparation and use of chemicals and modernization of technological standards in the construction industry have resulted in the development of new chemical additives for optimizing the properties of building materials. Products such as polycarboxylate superplasticizers provide improved fluidity and cohesion of the cement grains, in addition to improving the dispersion with respect to slurries without additives. This study aimed at adapting chemical additives used in civil construction to be used use in oilwell cement slurries systems, using Portland cement CPP-Special Class as the hydraulic binder. The chemical additives classified as defoamer, dispersant, fluid loss controller and retarder were characterized by infrared absorption spectroscopy, thermogravimetric analyses and technological tests set by the API (American Petroleum Institute). These additives showed satisfactory results for its application in cement slurries systems for oil wells. The silicone-based defoamer promoted the reduction of air bubbles incorporated during the stirring of the slurries. The dispersant significantly reduced the rheological parameters of the systems studied. The tests performed with the fluid loss controller and the retarder also resulted in suitable properties for application as chemical additives in cement slurries

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dentre os materiais de construção utilizados nas instalações rurais, merecem destaque as coberturas, pois são grandes responsáveis pelo conforto térmico, influenciando no balanço térmico no interior das instalações. Este trabalho objetivou avaliar a influência das coberturas sobre a entalpia (H), Carga Térmica Radiante (CTR) e no Índice de Temperatura de Globo Negro e Umidade (ITGU), em abrigos individuais para bezerros leiteiros. O delineamento foi o inteiramente casualizado com três tratamentos: Z - telha de zinco; CA - telha de cimento amianto, e CAB - telha de cimento amianto pintada de branco na face superior. As médias foram comparadas pelo teste de Scott Knott, a 1% de probabilidade. Os resultados mostraram que não houve diferença estatística entre os tratamentos (P<0,01) e o ambiente externo, para a H. Para a CTR, houve diferença estatística entre todos os tratamentos, em que CAB demonstrou menor CTR, 489,28 W m-², seguido do tratamento CA, 506,72 W m-², e Z com maior valor de CTR, 523,55 W m-². Para o ITGU, observaram-se menores valores para CAB (76,8) e CA (77,4), diferindo-se, significativamente do Z, que obteve maior valor (81,6). As telhas com pintura branca em sua face superior promoveram menor CTR e menor ITGU, favorecendo o ambiente térmico da instalação.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As atividades que envolvem o uso de explosivos devem ser controladas, não só com relação ao desmonte de estruturas (rocha e outros materiais), mas também quanto a danos estruturais em edificações próximas (casas, edificações históricas, etc.) e outros impactos ambientais como vibração, propagação de ruídos, ultralançamentos e sobrepressão atmosférica. Tais atividades são regidas por normas técnicas que sugerem parâmetros de medição e limites definidos na avaliação de prováveis danos. No caso específico de minerações em áreas urbanas, a velocidade de vibração de partícula (Vp), normalmente expressa em mm/s, é o parâmetro que tem dado melhor correlação na avaliação de possíveis danos às estruturas civis, atribuídos às vibrações do terreno. As diferentes normas existentes apresentam valores de Vp que variam de 2mm/s para edifícios históricos até 150mm/s para construções em concreto armado. A maioria delas considera na avaliação de danos estruturais, além da velocidade, a freqüência da vibração. Algumas normas foram elaboradas com base em dados experimentais, analisando parâmetros como o tipo de construção e o material nela utilizados, outras se basearam apenas em valores empíricos, mas todas apresentam valores conservativos. A norma brasileira não avalia o parâmetro freqüência e não classifica os diferentes tipos de estruturas civis, restringindo-se ao valor resultante da velocidade de vibração como parâmetro medido, sendo, assim, limitada e deficiente em relação às normas internacionais. A coletânea aqui apresentada reuniu as normas nas Américas e em outros continentes, além de uma comparação com as normas européias mais importantes em âmbito mundial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work proposes a methodology for non destructive testing (NDT) of reinforced concrete structures, using superficial magnetic fields and artificial neural networks, in order to identify the size and position of steel bars, embedded into the concrete. For the purposes of this paper, magnetic induction curves were obtained by using a finite element program. Perceptron Multilayered (PML) ANNs, with Levemberg-Marquardt training algorithm were used. The results presented very good agreement with the expect ones, encouraging the development of real systems based upon the proposed methodology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Photoluminescence and photo-excited conductivity data as well as structural analysis are presented for sol-gel SnO2 thin films doped with rare earth ions Eu3+ and Er3+, deposited by sol-gel-dip-coating technique. Photoluminescence spectra are obtained under excitation with various types of monochromatic light sources, such as Kr+, Ar+ and Nd:YAG lasers, besides a Xe lamp plus a selective monochromator with UV grating. The luminescence fine structure is rather different depending on the location of the rare-earth doping, at lattice symmetric sites or segregated at the asymmetric grain boundary layer sites. The decay of photo-excited conductivity also shows different trapping rate depending on the rare-earth concentration. For Er-doped films, above the saturation limit, the evaluated capture energy is higher than for films with concentration below the limit, in good agreement with the different behaviour obtained from luminescence data. For Eu-doped films, the difference in the capture energy is not so evident in these materials with nanoscocopic crystallites, even though the luminescence spectra are rather distinct. It seems that grain boundary scattering plays a major role in Eu-doped SnO2 films. Structural evaluation helps to interpret the electro-optical data. © 2010 IOP Publishing Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Geografia - FCT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasingly, the furniture market is competitive. The construction industry presents itself in growth, mainly due to the lines of existing incentives and tax credits established by the government, assisting the impulse to purchase real estate, building materials and furniture. Factors that promote and strengthen the sector's growth. With high demand from the furniture market, demand for higher quality and increasing technological advances, research is often undertaken in search of solutions for process improvement and product features, focusing on the production of materials less harmful to the environment, provision of raw press to lower cost, improve the production process and product development of cost-effective. This research focuses on the comparative study between two materials widely used in furniture manufacturing. MDF (Medium Density Fiberboard) and MDP (Medium Density Particleboard). The subject provides the focus in furniture production, presenting and comparing data collected from three companies producing panels between physical and mechanical characteristics of the materials, also presenting some of the main factors of influence on the quality of the panels, their features and applications on mobile. The study shows the high potential of using the MDP (Medium Density Particleboard) in furniture designs, as well as MDF (Medium Density Particleboard), favoring the final terms of the project , resulting in better utilization of each material , avoiding waste and increase unnecessary cost . Currently, several projects are developed in MDP and MDF furniture, where there is no relevance to their characteristics regarding their limitations. Many of these furnishings are designed without a specific study of the best use and positioning of each material, with better utilization , favoring collateral design , especially furniture designed exclusively for each environment . The lack of technical ...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many small businesses suffer from a lack of control of goods stored. This lack of control affects other areas of the company as purchase, that can’t buy material in an advanced and accurated way. It also affects services provided by the company, especially when it is a store because for sell something it is necessary to have the material in the right time. Futhermore, the business isn’t able to identify obsolete items in stock, theft and vandalism, loss or damage to materials. All of these disorders can be converted into financial losses that make much difference to a small business that needs to remain competitive in the market facing the giants while generating a profit that allows it to invest in their growth. Therefore, any unnecessary expense is exceedingly harmful and any savings already differentiates it from other companies of similar size. This study deals with the application of production engineering tools as 5S, kanban and layout in a building materials retail to tackle problems that prevent this company to have a stock organized and accurated. Finally, we recorded gains that the company reached with the implementation of part of the solution proposed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to the great impact caused by construction, the university has a major role in the development of alternative projects and studies aimed at sustainable development. This project presents the advantages and importance of building in a sustainable manner from the beginning to end of the Center of Experiences at UNESP, Rio Claro / SP. It will be presented alternative building materials that have high environmental performance and that bring the least negative impacts as possible. Providing a Center of Experiences through a sustainable building is in need of the university to renovate the new trends of society in which the construction is in harmony with the environment in which it is inserted. This sustainable building will serve as a model for students and residents of Rio Claro, since the building itself will serve as a way of learning to the audience goer, as well as for the other campuses of UNESP. Thus, this project will serve as a guide for decision makers facing the huge amount of building materials available in the market