935 resultados para Brownian Motion with Returns to Zero
Resumo:
The questions studied in this thesis are centered around the moment operators of a quantum observable, the latter being represented by a normalized positive operator measure. The moment operators of an observable are physically relevant, in the sense that these operators give, as averages, the moments of the outcome statistics for the measurement of the observable. The main questions under consideration in this work arise from the fact that, unlike a projection valued observable of the von Neumann formulation, a general positive operator measure cannot be characterized by its first moment operator. The possibility of characterizing certain observables by also involving higher moment operators is investigated and utilized in three different cases: a characterization of projection valued measures among all the observables is given, a quantization scheme for unbounded classical variables using translation covariant phase space operator measures is presented, and, finally, a mathematically rigorous description is obtained for the measurements of rotated quadratures and phase space observables via the high amplitude limit in the balanced homodyne and eight-port homodyne detectors, respectively. In addition, the structure of the covariant phase space operator measures, which is essential for the above quantization, is analyzed in detail in the context of a (not necessarily unimodular) locally compact group as the phase space.
Resumo:
BACKGROUND: In contrast to obesity, information on the health risks of underweight is sparse. We examined the long-term association between underweight and mortality by considering factors possibly influencing this relationship. METHODS: We included 31,578 individuals aged 25-74 years, who participated in population based health studies between 1977 and 1993 and were followed-up for survival until 2008 by record linkage with the Swiss National Cohort (SNC). Body Mass Index (BMI) was calculated from measured (53% of study population) or self-reported height and weight. Underweight was defined as BMI < 18.5 kg/m2. Cox regression models were used to determine mortality Hazard Ratios (HR) of underweight vs. normal weight (BMI 18.5- < 25.0 kg/m2). Covariates were study, sex, smoking, healthy eating proxy, sports frequency, and educational level. RESULTS: Underweight individuals represented 3.0% of the total study population (n = 945), and were mostly women (89.9%). Compared to normal weight, underweight was associated with increased all-cause mortality (HR: 1.37; 95% CI: 1.14-1.65). Increased risk was apparent in both sexes, regardless of smoking status, and mainly driven by excess death from external causes (HR: 3.18; 1.96-5.17), but not cancer, cardiovascular or respiratory diseases. The HR were 1.16 (0.88-1.53) in studies with measured BMI and 1.59 (1.24-2.05) with self-reported BMI. CONCLUSIONS: The increased risk of dying of underweight people was mainly due to an increased mortality risk from external causes. Using self-reported BMI may lead to an overestimation of mortality risk associated with underweight.
Resumo:
BACKGROUND: Hallux valgus is one of the most common forefoot problems in females. Studies have looked at gait alterations due to hallux valgus deformity, assessing temporal, kinematic or plantar pressure parameters individually. The present study, however, aims to assess all listed parameters at once and to isolate the most clinically relevant gait parameters for moderate to severe hallux valgus deformity with the intent of improving post-operative patient prognosis and rehabilitation. METHODS: The study included 26 feet with moderate to severe hallux valgus deformity and 30 feet with no sign of hallux valgus in female participants. Initially, weight bearing radiographs and foot and ankle clinical scores were assessed. Gait assessment was then performed utilizing pressure insoles (PEDAR®) and inertial sensors (Physilog®) and the two groups were compared using a non-parametric statistical hypothesis test (Wilcoxon rank sum, P<0.05). Furthermore, forward stepwise regression was used to reduce the number of gait parameters to the most clinically relevant and correlation of these parameters was assessed with the clinical score. FINDINGS: Overall, the results showed clear deterioration in several gait parameters in the hallux valgus group compared to controls and 9 gait parameters (effect size between 1.03 and 1.76) were successfully isolated to best describe the altered gait in hallux valgus deformity (r(2)=0.71) as well as showed good correlation with clinical scores. INTERPRETATION: Our results, and nine listed parameters, could serve as benchmark for characterization of hallux valgus and objective evaluation of treatment efficacy.
Resumo:
Many three-dimensional (3-D) structures in rock, which formed during the deformation of the Earth's crust and lithosphere, are controlled by a difference in mechanical strength between rock units and are often the result of a geometrical instability. Such structures are, for example, folds, pinch-and-swell structures (due to necking) or cuspate-lobate structures (mullions). These struc-tures occur from the centimeter to the kilometer scale and the related deformation processes con-trol the formation of, for example, fold-and-thrust belts and extensional sedimentary basins or the deformation of the basement-cover interface. The 2-D deformation processes causing these structures are relatively well studied, however, several processes during large-strain 3-D defor-mation are still incompletely understood. One of these 3-D processes is the lateral propagation of these structures, such as fold and cusp propagation in a direction orthogonal to the shortening direction or neck propagation in direction orthogonal to the extension direction. Especially, we are interested in fold nappes which are recumbent folds with amplitudes usually exceeding 10 km and they have been presumably formed by ductile shearing. They often exhibit a constant sense of shearing and a non-linear increase of shear strain towards their overturned limb. The fold axes of the Morcles fold nappe in western Switzerland plunges to the ENE whereas the fold axes in the more eastern Doldenhorn nappe plunges to the WSW. These opposite plunge direc-tions characterize the Rawil depression (Wildstrubel depression). The Morcles nappe is mainly the result of layer parallel contraction and shearing. During the compression the massive lime-stones were more competent than the surrounding marls and shales, which led to the buckling characteristics of the Morcles nappe, especially in the north-dipping normal limb. The Dolden-horn nappe exhibits only a minor overturned fold limb. There are still no 3-D numerical studies which investigate the fundamental dynamics of the formation of the large-scale 3-D structure including the Morcles and Doldenhorn nappes and the related Rawil depression. We study the 3-D evolution of geometrical instabilities and fold nappe formation with numerical simulations based on the finite element method (FEM). Simulating geometrical instabilities caused by sharp variations of mechanical strength between rock units requires a numerical algorithm that can accurately resolve material interfaces for large differences in material properties (e.g. between limestone and shale) and for large deformations. Therefore, our FE algorithm combines a nu-merical contour-line technique and a deformable Lagrangian mesh with re-meshing. With this combined method it is possible to accurately follow the initial material contours with the FE mesh and to accurately resolve the geometrical instabilities. The algorithm can simulate 3-D de-formation for a visco-elastic rheology. The viscous rheology is described by a power-law flow law. The code is used to study the 3-D fold nappe formation, the lateral propagation of folding and also the lateral propagation of cusps due to initial half graben geometry. Thereby, the small initial geometrical perturbations for folding and necking are exactly followed by the FE mesh, whereas the initial large perturbation describing a half graben is defined by a contour line inter-secting the finite elements. Further, the 3-D algorithm is applied to 3-D viscous nacking during slab detachment. The results from various simulations are compared with 2-D resulats and a 1-D analytical solution. -- On retrouve beaucoup de structures en 3 dimensions (3-D) dans les roches qui ont pour origines une déformation de la lithosphère terrestre. Ces structures sont par exemple des plis, des boudins (pinch-and-swell) ou des mullions (cuspate-lobate) et sont présentés de l'échelle centimétrique à kilométrique. Mécaniquement, ces structures peuvent être expliquées par une différence de résistance entre les différentes unités de roches et sont généralement le fruit d'une instabilité géométrique. Ces différences mécaniques entre les unités contrôlent non seulement les types de structures rencontrées, mais également le type de déformation (thick skin, thin skin) et le style tectonique (bassin d'avant pays, chaîne d'avant pays). Les processus de la déformation en deux dimensions (2-D) formant ces structures sont relativement bien compris. Cependant, lorsque l'on ajoute la troisiéme dimension, plusieurs processus ne sont pas complètement compris lors de la déformation à large échelle. L'un de ces processus est la propagation latérale des structures, par exemple la propagation de plis ou de mullions dans la direction perpendiculaire à l'axe de com-pression, ou la propagation des zones d'amincissement des boudins perpendiculairement à la direction d'extension. Nous sommes particulièrement intéressés les nappes de plis qui sont des nappes de charriage en forme de plis couché d'une amplitude plurikilométrique et étant formées par cisaillement ductile. La plupart du temps, elles exposent un sens de cisaillement constant et une augmentation non linéaire de la déformation vers la base du flanc inverse. Un exemple connu de nappes de plis est le domaine Helvétique dans les Alpes de l'ouest. Une de ces nap-pes est la Nappe de Morcles dont l'axe de pli plonge E-NE tandis que de l'autre côté de la dépression du Rawil (ou dépression du Wildstrubel), la nappe du Doldenhorn (équivalent de la nappe de Morcles) possède un axe de pli plongeant O-SO. La forme particulière de ces nappes est due à l'alternance de couches calcaires mécaniquement résistantes et de couches mécanique-ment faibles constituées de schistes et de marnes. Ces différences mécaniques dans les couches permettent d'expliquer les plissements internes à la nappe, particulièrement dans le flanc inver-se de la nappe de Morcles. Il faut également noter que le développement du flanc inverse des nappes n'est pas le même des deux côtés de la dépression de Rawil. Ainsi la nappe de Morcles possède un important flanc inverse alors que la nappe du Doldenhorn en est presque dépour-vue. A l'heure actuelle, aucune étude numérique en 3-D n'a été menée afin de comprendre la dynamique fondamentale de la formation des nappes de Morcles et du Doldenhorn ainsi que la formation de la dépression de Rawil. Ce travail propose la première analyse de l'évolution 3-D des instabilités géométriques et de la formation des nappes de plis en utilisant des simulations numériques. Notre modèle est basé sur la méthode des éléments finis (FEM) qui permet de ré-soudre avec précision les interfaces entre deux matériaux ayant des propriétés mécaniques très différentes (par exemple entre les couches calcaires et les couches marneuses). De plus nous utilisons un maillage lagrangien déformable avec une fonction de re-meshing (production d'un nouveau maillage). Grâce à cette méthode combinée il nous est possible de suivre avec précisi-on les interfaces matérielles et de résoudre avec précision les instabilités géométriques lors de la déformation de matériaux visco-élastiques décrit par une rhéologie non linéaire (n>1). Nous uti-lisons cet algorithme afin de comprendre la formation des nappes de plis, la propagation latérale du plissement ainsi que la propagation latérale des structures de type mullions causé par une va-riation latérale de la géométrie (p.ex graben). De plus l'algorithme est utilisé pour comprendre la dynamique 3-D de l'amincissement visqueux et de la rupture de la plaque descendante en zone de subduction. Les résultats obtenus sont comparés à des modèles 2-D et à la solution analytique 1-D. -- Viele drei dimensionale (3-D) Strukturen, die in Gesteinen vorkommen und durch die Verfor-mung der Erdkruste und Litosphäre entstanden sind werden von den unterschiedlichen mechani-schen Eigenschaften der Gesteinseinheiten kontrolliert und sind häufig das Resulat von geome-trischen Istabilitäten. Zu diesen strukturen zählen zum Beispiel Falten, Pich-and-swell Struktu-ren oder sogenannte Cusbate-Lobate Strukturen (auch Mullions). Diese Strukturen kommen in verschiedenen Grössenordungen vor und können Masse von einigen Zentimeter bis zu einigen Kilometer aufweisen. Die mit der Entstehung dieser Strukturen verbundenen Prozesse kontrol-lieren die Entstehung von Gerbirgen und Sediment-Becken sowie die Verformung des Kontaktes zwischen Grundgebirge und Stedimenten. Die zwei dimensionalen (2-D) Verformungs-Prozesse die zu den genannten Strukturen führen sind bereits sehr gut untersucht. Einige Prozesse wäh-rend starker 3-D Verformung sind hingegen noch unvollständig verstanden. Einer dieser 3-D Prozesse ist die seitliche Fortpflanzung der beschriebenen Strukturen, so wie die seitliche Fort-pflanzung von Falten und Cusbate-Lobate Strukturen senkrecht zur Verkürzungsrichtung und die seitliche Fortpflanzung von Pinch-and-Swell Strukturen othogonal zur Streckungsrichtung. Insbesondere interessieren wir uns für Faltendecken, liegende Falten mit Amplituden von mehr als 10 km. Faltendecken entstehen vermutlich durch duktile Verscherung. Sie zeigen oft einen konstanten Scherungssinn und eine nicht-lineare zunahme der Scherverformung am überkipp-ten Schenkel. Die Faltenachsen der Morcles Decke in der Westschweiz fallen Richtung ONO während die Faltenachsen der östicher gelegenen Doldenhorn Decke gegen WSW einfallen. Diese entgegengesetzten Einfallrichtungen charakterisieren die Rawil Depression (Wildstrubel Depression). Die Morcles Decke ist überwiegend das Resultat von Verkürzung und Scherung parallel zu den Sedimentlagen. Während der Verkürzung verhielt sich der massive Kalkstein kompetenter als der Umliegende Mergel und Schiefer, was zur Verfaltetung Morcles Decke führ-te, vorallem in gegen Norden eifallenden überkippten Schenkel. Die Doldenhorn Decke weist dagegen einen viel kleineren überkippten Schenkel und eine stärkere Lokalisierung der Verfor-mung auf. Bis heute gibt es keine 3-D numerischen Studien, die die fundamentale Dynamik der Entstehung von grossen stark verformten 3-D Strukturen wie den Morcles und Doldenhorn Decken sowie der damit verbudenen Rawil Depression untersuchen. Wir betrachten die 3-D Ent-wicklung von geometrischen Instabilitäten sowie die Entstehung fon Faltendecken mit Hilfe von numerischen Simulationen basiert auf der Finite Elemente Methode (FEM). Die Simulation von geometrischen Instabilitäten, die aufgrund von Änderungen der Materialeigenschaften zwischen verschiedenen Gesteinseinheiten entstehen, erfortert einen numerischen Algorithmus, der in der Lage ist die Materialgrenzen mit starkem Kontrast der Materialeigenschaften (zum Beispiel zwi-schen Kalksteineinheiten und Mergel) für starke Verfomung genau aufzulösen. Um dem gerecht zu werden kombiniert unser FE Algorithmus eine numerische Contour-Linien-Technik und ein deformierbares Lagranges Netz mit Re-meshing. Mit dieser kombinierten Methode ist es mög-lich den anfänglichen Materialgrenzen mit dem FE Netz genau zu folgen und die geometrischen Instabilitäten genügend aufzulösen. Der Algorithmus ist in der Lage visko-elastische 3-D Ver-formung zu rechnen, wobei die viskose Rheologie mit Hilfe eines power-law Fliessgesetzes beschrieben wird. Mit dem numerischen Algorithmus untersuchen wir die Entstehung von 3-D Faltendecken, die seitliche Fortpflanzung der Faltung sowie der Cusbate-Lobate Strukturen die sich durch die Verkürzung eines mit Sediment gefüllten Halbgraben bilden. Dabei werden die anfänglichen geometrischen Instabilitäten der Faltung exakt mit dem FE Netz aufgelöst wäh-rend die Materialgranzen des Halbgrabens die Finiten Elemente durchschneidet. Desweiteren wird der 3-D Algorithmus auf die Einschnürung während der 3-D viskosen Plattenablösung und Subduktion angewandt. Die 3-D Resultate werden mit 2-D Ergebnissen und einer 1-D analyti-schen Lösung verglichen.
Resumo:
This paper provides novel empirical evidence of the indirect effect of educational attainment on regional economic growth, through its influence on the profitability of investment in physical capital. We test the hypothesis that the regional heterogeneity of the return to physical capital can be directly related to the existing heterogeneity in the educational attainment of workers. The results for the Spanish case support our hypothesis that the higher the educational attainment of workers the greater the returns on investment in physical capital. In fact, this effect seems to be sufficiently strong to have counterbalanced the traditional mechanism of decreasing returns to capital accumulation.
Resumo:
Glass is a unique material with a long history. Several glass products are used daily in our everyday life, often unnoticed. Glass can be found not only in obvious applications such as tableware, windows, and light bulbs, but also in tennis rackets, windmill turbine blades, optical devices, and medical implants. The glasses used at present as implants are inorganic silica-based melt-derived compositions mainly for hard-tissue repair as bone graft substitute in dentistry and orthopedics. The degree of glass reactivity desired varies according to implantation situation and it is vital that the ion release from any glasses used in medical applications is controlled. Understanding the in vitro dissolution rate of glasses provides a first approximation of their behavior in vivo. Specific studies concerning dissolution properties of bioactive glasses have been relatively scarce and mostly concentrated to static condition studies. The motivation behind this work was to develop a simple and accurate method for quantifying the in vitro dissolution rate of highly different types of glass compositions with interest for future clinical applications. By combining information from various experimental conditions, a better knowledge of glass dissolution and the suitability of different glasses for different medical applications can be obtained. Thus, two traditional and one novel approach were utilized in this thesis to study glass dissolution. The chemical durability of silicate glasses was tested in water and TRIS-buffered solution at static and dynamic conditions. The traditional in vitro testing with a TRISbuffered solution under static conditions works well with bioactive or with readily dissolving glasses, and it is easy to follow the ion dissolution reactions. However, in the buffered solution no marked differences between the more durable glasses were observed. The hydrolytic resistance of the glasses was studied using the standard procedure ISO 719. The relative scale given by the standard failed to provide any relevant information when bioactive glasses were studied. However, the clear differences in the hydrolytic resistance values imply that the method could be used as a rapid test to get an overall idea of the biodegradability of glasses. The standard method combined with the ion concentration and pH measurements gives a better estimate of the hydrolytic resistance because of the high silicon amount released from a glass. A sensitive on-line analysis method utilizing inductively coupled plasma optical emission spectrometer and a flow-through micro-volume pH electrode was developed to study the initial dissolution of biocompatible glasses. This approach was found suitable for compositions within a large range of chemical durability. With this approach, the initial dissolution of all ions could be measured simultaneously and quantitatively, which gave a good overall idea of the initial dissolution rates for the individual ions and the dissolution mechanism. These types of results with glass dissolution were presented for the first time during the course of writing this thesis. Based on the initial dissolution patterns obtained with the novel approach using TRIS, the experimental glasses could be divided into four distinct categories. The initial dissolution patterns of glasses correlated well with the anticipated bioactivity. Moreover, the normalized surface-specific mass loss rates and the different in vivo models and the actual in vivo data correlated well. The results suggest that this type of approach can be used for prescreening the suitability of novel glass compositions for future clinical applications. Furthermore, the results shed light on the possible bioactivity of glasses. An additional goal in this thesis was to gain insight into the phase changes occurring during various heat treatments of glasses with three selected compositions. Engineering-type T-T-T curves for glasses 1-98 and 13-93 were stablished. The information gained is essential in manufacturing amorphous porous implants or for drawing of continuous fibers of the glasses. Although both glasses can be hot worked to amorphous products at carefully controlled conditions, 1-98 showed one magnitude greater nucleation and crystal growth rate than 13-93. Thus, 13-93 is better suited than 1-98 for working processes which require long residence times at high temperatures. It was also shown that amorphous and partially crystalline porous implants can be sintered from bioactive glass S53P4. Surface crystallization of S53P4, forming Na2O∙CaO∙2SiO2, was observed to start at 650°C. The secondary crystals of Na2Ca4(PO4)2SiO4, reported for the first time in this thesis, were detected at higher temperatures, from 850°C to 1000°C. The crystal phases formed affected the dissolution behavior of the implants in simulated body fluid. This study opens up new possibilities for using S53P4 to manufacture various structures, while tailoring their bioactivity by controlling the proportions of the different phases. The results obtained in this thesis give valuable additional information and tools to the state of the art for designing glasses with respect to future clinical applications. With the knowledge gained we can identify different dissolution patters and use this information to improve the tuning of glass compositions. In addition, the novel online analysis approach provides an excellent opportunity to further enhance our knowledge of glass behavior in simulated body conditions.
Resumo:
Longitudinal surveys are increasingly used to collect event history data on person-specific processes such as transitions between labour market states. Surveybased event history data pose a number of challenges for statistical analysis. These challenges include survey errors due to sampling, non-response, attrition and measurement. This study deals with non-response, attrition and measurement errors in event history data and the bias caused by them in event history analysis. The study also discusses some choices faced by a researcher using longitudinal survey data for event history analysis and demonstrates their effects. These choices include, whether a design-based or a model-based approach is taken, which subset of data to use and, if a design-based approach is taken, which weights to use. The study takes advantage of the possibility to use combined longitudinal survey register data. The Finnish subset of European Community Household Panel (FI ECHP) survey for waves 1–5 were linked at person-level with longitudinal register data. Unemployment spells were used as study variables of interest. Lastly, a simulation study was conducted in order to assess the statistical properties of the Inverse Probability of Censoring Weighting (IPCW) method in a survey data context. The study shows how combined longitudinal survey register data can be used to analyse and compare the non-response and attrition processes, test the missingness mechanism type and estimate the size of bias due to non-response and attrition. In our empirical analysis, initial non-response turned out to be a more important source of bias than attrition. Reported unemployment spells were subject to seam effects, omissions, and, to a lesser extent, overreporting. The use of proxy interviews tended to cause spell omissions. An often-ignored phenomenon classification error in reported spell outcomes, was also found in the data. Neither the Missing At Random (MAR) assumption about non-response and attrition mechanisms, nor the classical assumptions about measurement errors, turned out to be valid. Both measurement errors in spell durations and spell outcomes were found to cause bias in estimates from event history models. Low measurement accuracy affected the estimates of baseline hazard most. The design-based estimates based on data from respondents to all waves of interest and weighted by the last wave weights displayed the largest bias. Using all the available data, including the spells by attriters until the time of attrition, helped to reduce attrition bias. Lastly, the simulation study showed that the IPCW correction to design weights reduces bias due to dependent censoring in design-based Kaplan-Meier and Cox proportional hazard model estimators. The study discusses implications of the results for survey organisations collecting event history data, researchers using surveys for event history analysis, and researchers who develop methods to correct for non-sampling biases in event history data.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
The objective of the present study was to evaluate and quantify fetal risks involved in the administration of cancer chemotherapy during gestation, as well as to assess the long-term effects on the exposed children. In this retrospective, cohort study, we reviewed the records of women aged 15 to 45 years with a diagnosis of malignancy or benign tumors with malignant behavior at three reference services in the State of Rio Grande do Sul, Brazil, from 1990 to 1997. All patients with a diagnosis of pregnancy at any time during the course of the disease were selected, regardless of whether or not they received specific medication. Fetal outcomes of 14 pregnancies with chemotherapy exposure were compared to that of 15 control pregnancies in which these drugs were not used. Long-term follow-up of the exposed children was carried out. Fisher's exact test was used to compare the groups. Continuous variables were compared by the Wilcoxon-Mann-Whitney test. We found an increased rate of prematurity (6/8 vs 2/10; RR: 3.75; CI: 1.02-13.8; P = 0.03) in the exposed group. There was a trend to an increased fetal death rate (4/12 vs 0/10; P = 0.07) in the group exposed to chemotherapy. No malformations were detected in any child, which can be related to our small sample size as well as to the fact that most exposures occurred after the first trimester of pregnancy. Other larger, controlled studies are needed to establish the actual risk related to cancer chemotherapy during pregnancy.
Resumo:
A cross-sectional study was conducted on HIV-infected adults being treated with antiretroviral drugs at a reference service in Southern Brazil. Participants answered a sociodemographic questionnaire and were tested by scales assessing sociocognitive variables. Adherence to treatment was assessed by a self-report inventory developed for the study. Clinical information was obtained from the patients' records. Significance tests were conducted using univariate logistic regressions followed by multivariate logistic regression analysis. A total of 195 patients participated in the study and 56.9% of them reported > or = 95% adherence on the previous two days. In univariate analysis, the odds of adherence increased with self-efficacy (a person's conviction that he/she can successfully execute the behavior required to produce a certain desired outcome) in taking medications as prescribed (OR = 3.50, 95% CI 1.90-6.55), and decreased with perception of negative affect and physical concerns (OR = 0.71, 95% CI 0.53-0.95). The odds were lower for taking antiretroviral medications >4 times a day (OR = 0.44, 95% CI 0.20-0.94) and higher for patients with 8 years of schooling (OR = 2.28, 95% CI 1.12-4.66). In the multivariate analysis, self-efficacy (OR = 3.33, 95% CI 1.69-6.56) and taking medication >4 times a day (OR = 0.34, 95% CI 0.14-0.80) were independently associated with adherence. Self-efficacy was the most important predictor of adherence, followed by number of times antiretroviral medication was taken per day. Among sociodemographic and clinical variables, only the number of years of schooling was associated with adherence. Motivational interventions based on self-efficacy may be useful for increasing treatment adherence.
Resumo:
Relaxation in the mammalian ventricle is initiated by Ca2+ removal from the cytosol, which is performed by three main transport systems: sarcoplasmic reticulum Ca2+-ATPase (SR-A), Na+-Ca2+ exchanger (NCX) and the so-called slow mechanisms (sarcolemmal Ca2+-ATPase and mitochondrial Ca2+ uptake). To estimate the relative contribution of each system to twitch relaxation, SR Ca2+ accumulation must be selectively inhibited, usually by the application of high caffeine concentrations. However, caffeine has been reported to often cause changes in membrane potential due to NCX-generated inward current, which compromises the reliability of its use. In the present study, we estimated integrated Ca2+ fluxes carried by SR-A, NCX and slow mechanisms during twitch relaxation, and compared the results when using caffeine application (Cf-NT) and an electrically evoked twitch after inhibition of SR-A with thapsigargin (TG-TW). Ca2+ transients were measured in 20 isolated adult rat ventricular myocytes with indo-1. For transients in which one or more transporters were inhibited, Ca2+ fluxes were estimated from the measured free Ca2+ concentration and myocardial Ca2+ buffering characteristics. NCX-mediated integrated Ca2+ flux was significantly higher with TG-TW than with Cf-NT (12 vs 7 µM), whereas SR-dependent flux was lower with TG-TW (77 vs 81 µM). The relative participations of NCX (12.5 vs 8% with TG-TW and Cf-NT, respectively) and SR-A (85 vs 89.5% with TG-TW and Cf-NT, respectively) in total relaxation-associated Ca2+ flux were also significantly different. We thus propose TG-TW as a reliable alternative to estimate NCX contribution to twitch relaxation in this kind of analysis.
Resumo:
Interferon (IFN)-alpha receptor mRNA expression in liver of patients with chronic hepatitis C has been shown to be a response to IFN-alpha therapy. The objective of the present study was to determine whether the expression of mRNA for subunit 1 of the IFN-alpha receptor (IFNAR1) in peripheral blood mononuclear cells (PBMC) is associated with the response to IFN-alpha in patients with chronic hepatitis C. Thirty patients with positive anti-HCV and HCV-RNA, and abnormal levels of alanine aminotransferase in serum were selected and treated with IFN-alpha2b for one year. Those with HBV or HIV infection, or using alcohol were not included. Thirteen discontinued the treatment and were not evaluated. The IFN-alpha response was monitored on the basis of alanine aminotransferase level and positivity for HCV-RNA in serum. IFNAR1-mRNA expression in PBMC was measured by reverse transcription-polymerase chain reaction before and during the first three months of therapy. The results are reported as IFNAR1-mRNA/ß-actin-mRNA ratio (mean ± SD). Before treatment, responder patients had significantly higher IFNAR1-mRNA expression in PBMC (0.67 ± 0.15; N = 5; P < 0.05) compared to non-responders (0.35 ± 0.17; N = 12) and controls (0.30 ± 0.16; N = 9). Moreover, IFNAR1-mRNA levels were significantly reduced after 3 months of treatment in responders, whereas there were no differences in IFNAR1 expression in non-responders during IFN-alpha therapy. Basal IFNAR1-mRNA expression was not correlated with the serum level of alanine and aspartate aminotransferases or the presence of cirrhosis. The present results suggest that IFNAR1-mRNA expression in PBMC is associated with IFN-alpha response to hepatitis C and may be useful for monitoring therapy in patients with chronic hepatitis C.
Resumo:
Susceptibility to experimental autoimmune uveitis (EAU) in inbred mice has been associated with a dominant Th1 response. Elevated anti-inter-photoreceptor retinoid-binding protein (anti-IRBP) IgG2a/IgG1 antibody ratios have been implicated as candidate markers to predict disease severity. In the present study, both the anti-IRBP antibody isotype and severity of EAU phenotypes were examined in 4 non-isogenic genetically selected mouse lines to determine if they can be used as general markers of disease. Mice between 8 and 12 weeks old selected for high (H III) or low (L III) antibody response and for maximum (AIR MAX) or minimum (AIR MIN) acute inflammatory reaction (AIR) were immunized with IRBP. Each experiment was performed with at least 5 mice per group. EAU was evaluated by histopathology 21 days after immunization and the minimal criterion was inflammatory cell infiltration of the ciliary body, choroid and retina. Serum IgG1- and IgG2a-specific antibodies were determined by ELISA. EAU was graded by histological examination of the enucleated eyes. The incidence of EAU was lower in AIR MIN mice whereas in the other strains approximately 40% of the animals developed the disease. Low responder animals did not produce anti-IRBP IgG2a antibodies or interferon-gamma. No correlation was observed between susceptibility to EAU and anti-IRBP isotype profiles. Susceptibility to EAU is related to the intrinsic capacity to mount higher inflammatory reactions and increased production of anti-IRBP IgG2a isotype is not necessarily a marker of this immunologic profile.
Resumo:
Mycobacterium tuberculosis kills more people than any other single pathogen, with an estimated one-third of the world's population being infected. Among those infected, only 10% will develop the disease. There are several demonstrations that susceptibility to tuberculosis is linked to host genetic factors in twins, family and associated-based case control studies. In the past years, there has been dramatic improvement in our understanding of the role of innate and adaptive immunity in the human host defense to tuberculosis. To date, attention has been paid to the role of genetic host and parasitic factors in tuberculosis pathogenesis mainly regarding innate and adaptive immune responses and their complex interactions. Many studies have focused on the candidate genes for tuberculosis susceptibility ranging from those expressed in several cells from the innate or adaptive immune system such as Toll-like receptors, cytokines (TNF-α, TGF-β, IFN-γ, IL-1b, IL-1RA, IL-12, IL-10), nitric oxide synthase and vitamin D, both nuclear receptors and their carrier, the vitamin D-binding protein (VDBP). The identification of possible genes that can promote resistance or susceptibility to tuberculosis could be the first step to understanding disease pathogenesis and can help to identify new tools for treatment and vaccine development. Thus, in this mini-review, we summarize the current state of investigation on some of the genetic determinants, such as the candidate polymorphisms of vitamin D, VDBP, Toll-like receptor, nitric oxide synthase 2 and interferon-γ genes, to generate resistance or susceptibility to M. tuberculosis infection.