933 resultados para Broadband
Resumo:
In Nebraska, some areas of the state S primarily in the most rural areas of the state S may be underserved or unserved in terms of broadband access. Rural areas of the state also lag in economic development and are experiencing population losses. Additionally, broadband adoption and Internet usage among certain income and population groups remains low. Increasing adoption of broadband and Information Technology (IT) services is one way to create economic opportunities, attract new residents to rural areas and address economic inequalities among population groups.
Resumo:
Mención Internacional
Resumo:
Surface based measurements systems play a key role in defining the ground truth for climate modeling and satellite product validation. The Italian-French station of Concordia is operative year round since 2005 at Dome C (75°S, 123°E, 3230 m) on the East Antarctic Plateau. A Baseline Surface Radiation Network (BSRN) site was deployed and became operational since January 2006 to measure downwelling components of the radiation budget, and successively was expanded in April 2007 to measure upwelling radiation. Hence, almost a decade of measurement is now available and suitable to define a statistically significant climatology for the radiation budget of Concordia including eventual trends, by specifically assessing the effects of clouds and water vapor on SW and LW net radiation. A well known and robust clear sky-id algorithm (Long and Ackerman, 2000) has been operationally applied on downwelling SW components to identify cloud free events and to fit a parametric equation to determine clear-sky reference along the Antarctic daylight periods (September to April). A new model for surface broadband albedo has been developed in order to better describe the features the area. Then, a novel clear-sky LW parametrization, based on a-priori assumption about inversion layer structure, combined with daily and annual oscillations of the surface temperature, have been adopted and validated. The longwave based method is successively exploited to extend cloud radiative forcing studies to nighttime period (winter). Results indicated inter-annual and intra-annual warming behaviour, i.e. 13.70 W/m2 on the average, specifically approaching neutral effect in summer, when SW CRF compensates LW CRF, and warming along the rest of the year due prevalentely to CRF induced on the LW component.
Resumo:
Theory predicts the water hexamer to be the smallest water cluster with a three-dimensional hydrogen-bonding network as its minimum energy structure. There are several possible low-energy isomers, and calculations with different methods and basis sets assign them different relative stabilities. Previous experimental work has provided evidence for the cage, book, and cyclic isomers, but no experiment has identified multiple coexisting structures. Here, we report that broadband rotational spectroscopy in a pulsed supersonic expansion unambiguously identifies all three isomers; we determined their oxygen framework structures by means of oxygen-18–substituted water (H218O). Relative isomer populations at different expansion conditions establish that the cage isomer is the minimum energy structure. Rotational spectra consistent with predicted heptamer and nonamer structures have also been identified.
Resumo:
Over the recent years chirped-pulse, Fourier-transform microwave (CP-FTMW) spectrometers have chan- ged the scope of rotational spectroscopy. The broad frequency and large dynamic range make possible structural determinations in molecular systems of increasingly larger size from measurements of heavy atom (13C, 15N, 18O) isotopes recorded in natural abundance in the same spectrum as that of the parent isotopic species. The design of a broadband spectrometer operating in the 2–8 GHz frequency range with further improvements in sensitivity is presented. The current CP-FTMW spectrometer performance is benchmarked in the analyses of the rotational spectrum of the water heptamer, (H2O)7, in both 2– 8 GHz and 6–18 GHz frequency ranges. Two isomers of the water heptamer have been observed in a pulsed supersonic molecular expansion. High level ab initio structural searches were performed to pro- vide plausible low-energy candidates which were directly compared with accurate structures provided from broadband rotational spectra. The full substitution structure of the most stable species has been obtained through the analysis of all possible singly-substituted isotopologues (H218O and HDO), and a least-squares rm(1) geometry of the oxygen framework determined from 16 different isotopic species compares with the calculated O–O equilibrium distances at the 0.01 Å level.
Resumo:
Over the recent years chirped-pulse, Fourier-transform microwave (CP-FTMW) spectrometers have changed the scope of rotational spectroscopy. The broad frequency and large dynamic range make possible structural determinations in molecular systems of increasingly larger size from measurements of heavy atom (C-13, N-15, O-18) isotopes recorded in natural abundance in the same spectrum as that of the parent isotopic species. The design of a broadband spectrometer operating in the 2-8 GHz frequency range with further improvements in sensitivity is presented. The current CP-FTMW spectrometer performance is benchmarked in the analyses of the rotational spectrum of the water heptamer, (H2O)(7), in both 2-8 GHz and 6-18 GHz frequency ranges. Two isomers of the water heptamer have been observed in a pulsed supersonic molecular expansion. High level ab initio structural searches were performed to provide plausible low-energy candidates which were directly compared with accurate structures provided from broadband rotational spectra. The full substitution structure of the most stable species has been obtained through the analysis of all possible singly-substituted isotopologues ((H2O)-O-18 and HDO), and a least-squares r(m)((1)) geometry of the oxygen framework determined from 16 different isotopic species compares with the calculated O-O equilibrium distances at the 0.01 angstrom level. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate a multicore multidopant fiber which, when pumped with a single pump source around ∼800 nm , emits a more than one octave-spanning fluorescence spectrum ranging from 925 to 2300 nm . The fiber preform is manufactured from granulated oxides and the individual cores are doped with five different rare earths, i.e., Nd3+ , Yb3+ , Er3+ , Ho3+ , and Tm3+ .