1000 resultados para Brillouin spectroscopy
Resumo:
Quality and safety evaluation of agricultural products has become an increasingly important consideration in market/commercial viability and systems for such evaluations are now demanded by customers, including distributors and retailers. Unfortunately, most horticultural products struggle with delivering adequate and consistent quality to the consumer. Removing inconsistencies and providing what the consumer expects is a key factor for retaining and expanding both domestic and international markets. Most commercial quality classification systems for fruit and vegetables are based on external features of the product, for example: shape, colour, size, weight and blemishes. However, the external appearance of most fruit is generally not an accurate guide to the internal or eating quality of the fruit. Internal quality of fruit is currently subjectively judged on attributes such as volatiles, firmness, and appearance. Destructive subjective measures such as internal flesh colour, or objective measures such as extraction of juice to measure sweetness (oBrix) or assessment of dry matter (DM) content are also used, although obviously not for every fruit – just a sample to represent the whole consignment. For avocado fruit, external colour is not a maturity characteristic, and its smell is too weak and appears later in its maturity stage (Gaete-Garreton et al., 2005). Since maturity is a major component of avocado quality and palatability, it is important to harvest mature fruit, so as to ensure that fruit will ripen properly and have acceptable eating quality. Currently, commercial avocado maturity estimation is based on destructive assessment of the %DM, and sometimes percent oil, both of which are highly correlated with maturity (Clark et al., 2003; Mizrach & Flitsanov, 1999). Avocados Australia Limited (AAL (2008)) recommend a minimum maturity standard for its growers of 23 %DM (greater than 10% oil content) for the ‘Hass’ cultivar, although consumer studies indicate a preference for at least 25 %DM (Harker et al., 2007).
Resumo:
L$_{23}$ M$_{45}$ M$_{45}$/L$_{23}$ M$_{23}$ M$_{45}$, L$_{23}$ M$_{45}$ M$_{45}$/L$_{23}$ M$_{23}$ M$_{23}$ and L$_{23}$ M$_{23}$ M$_{45}$/L$_{23}$ M$_{23}$ M$_{23}$ Auger intensity ratios in transition metal oxides and sulphides are shown to be directly related to the number of valence electrons in the metal as well as to its oxidation state. The metal Auger intensity ratios provide a unique probe, independent of O (KLL) intensity, to study surface oxidation states of metals. These intensity ratios have been effectively employed to investigate surface oxidation of nickel, iron and copper. The oxidation studies have unravelled some interesting aspects of surface oxidation.
Resumo:
XPS studies show that the presence of chemisorbed chlorine stabilizes and also enhances molecular dioxygen species on Ag surfaces dosed with either K or Ba. The surface atomic oxygen is found to become depleted on chlorination. The variation in the nature of surface species with respect to temperature shows chlorine-induced diffusion of atomic oxygen into the subsurface region at 300 K. For coverages of potassium up to 8 × 1014 atoms/cm2, preferential chloridation of Ag occurs while at higher potassium coverages, KCl formation is distinctly observed on the surface. In the case of barium, two types of adsorbed chlorine species, Cl(α) and Cl(β), associated with Ag and Ba, respectively, are clearly seen even at low barium coverages. This is believed to be due to the higher valence occupation of barium compared to potassium. The Cl(α) species associated with Ag is found to occupy a preferred site on both K- and Ba-dosed surfaces, involving chemisorptive replacement of O(α) to the subsurface region.
Resumo:
Abstaract is not available.
Resumo:
Several molecules like ionophores, vitamins, ion-binding cyclic peptides, acidic phospholipids, surfactants are known to expose the inner side of vesicles, to the externally added cations. Whereas ionophores and certain other systems bring about these changes by a selective transport (influx) of the cation by specialized mechanisms known as the carrier and channel mechanism, other systems cause lysis and vesicle fusion. These systems have been successfully studied using1H,31 P and13C nuclear magnetic resonance spectroscopy after the demonstration, fifteen years ago, of the ability of paramagnetic lanthanide ions to distinguish the inside of the vesicle from the outside. The results of these ’nuclear magnetic resonance kinetics’ experiments are reviewed.
Resumo:
Hydrogen cyanide (HCN) is a toxic chemical that can potentially cause mild to severe reactions in animals when grazing forage sorghum. Developing technologies to monitor the level of HCN in the growing crop would benefit graziers, so that they can move cattle into paddocks with acceptable levels of HCN. In this study, we developed near-infrared spectroscopy (MRS) calibrations to estimate HCN in forage sorghum and hay. The full spectral NIRS range (400-2498 nm) was used as well as specific spectral ranges within the full spectral range, i.e., visible (400-750 nm), shortwave (800-1100 nm) and near-infrared (NIR) (1100-2498 nm). Using the full spectrum approach and partial least-squares (PLS), the calibration produced a coefficient of determination (R-2) = 0.838 and standard error of cross-validation (SECV) = 0.040%, while the validation set had a R-2 = 0.824 with a low standard error of prediction (SEP = 0.047%). When using a multiple linear regression (MLR) approach, the best model (NIR spectra) produced a R-2 = 0.847 and standard error of calibration (SEC) = 0.050% and a R-2 = 0.829 and SEP = 0.057% for the validation set. The MLR models built from these spectral regions all used nine wavelengths. Two specific wavelengths 2034 and 2458 nm were of interest, with the former associated with C=O carbonyl stretch and the latter associated with C-N-C stretching. The most accurate PLS and MLR models produced a ratio of standard error of prediction to standard deviation of 3.4 and 3.0, respectively, suggesting that the calibrations could be used for screening breeding material. The results indicated that it should be feasible to develop calibrations using PLS or MLR models for a number of users, including breeding programs to screen for genotypes with low HCN, as well as graziers to monitor crop status to help with grazing efficiency.
Resumo:
BACKGROUND: Twenty-two diverse sorghum landraces, classified as normal and opaque types obtained from Ethiopia, were characterised for grain quality parameters using near infra-red spectroscopy (NIRS), chemical and Rapid Visco-Analyzer (RVA) characteristics. RESULTS: Protein content ranged from 77 to 182 g kg-1, and starch content from 514 to 745 g kg(-1). The NIRS analysis indicated the pig faecal digestible energy range from 14.6 to 15.7MJ kg(-1) as fed, and the ileal digestible energy range from 11.3 to 13.9MJ kg(-1) as fed. The normal sorghums had higher digestible energy than the opaque sorghums, which exhibited lower RVA viscosities, and higher pasting temperatures and setback ratios. The RVA parameterswere positively correlated with the starch content and negatively correlated with the protein content. The normal and opaque types formed two distinct groups based on principal component and cluster analyses. CONCLUSION: The landraces were different for the various grain quality parameters with some landraces displaying unique RVA and NIRS profiles. This study will guide utilisation of the sorghum landraces in plant improvement programs, and provides a basis for further studies into how starch and other constituents behave in and affect the properties of these landraces. (C) 2011 Society of Chemical Industry
Resumo:
Photoacoustic spectroscopy has been employed to estimate quantitatively the acid sites on oxide catalysts. The technique involves the measurement of the ratio of intensities of absorption bands due to conjugate bases and acids of indicators adsorbed on the catalyst surface as a function of the amount of added n-butylamine. Basic sites in sodium-impregnated alumina samples have been examined by adsorbing phenolphthalein on these surfaces.
Resumo:
Photoacoustic spectroscopy has been employed to study the electronic spectra of a variety of solids. The systems studied include powders of intensely coloured dyes, amorphous chalcogenides and oxide gels besides polycrystalline samples of several oxide materials. Surface sensitivity of the technique has been examined by study of dye adsorption on oxide surfaces and determination of surface areas of active oxides. Acidic and basic sites on catalyst surfaces have also been estimated by this technique.
Resumo:
Proteins are complex biomacromolecules playing fundamental roles in the physiological processes of all living organisms. They function as structural units, enzymes, transporters, process regulators, and signal transducers. Defects in protein functions often derive from genetic mutations altering the protein structure, and impairment of essential protein functions manifests itself as pathological conditions. Proteins operate through interactions, and all protein functions depend on protein structure. In order to understand biological mechanisms at the molecular level, one has to know the structures of the proteins involved. This thesis covers structural and functional characterization of human filamins. Filamins are actin-binding and -bundling proteins that have numerous interaction partners. In addition to their actin-organizing functions, filamins are also known to have roles in cell adhesion and locomotion, and to participate in the logistics of cell membrane receptors, and in the coordination of intracellular signaling pathways. Filamin mutations in humans induce severe pathological conditions affecting the brain, bones, limbs, and the cardiovascular system. Filamins are large modular proteins composed of an N-terminal actin-binding domain and 24 consecutive immunoglobulin-like domains (IgFLNs). Nuclear magnetic resonance (NMR) spectroscopy is a versatile method of gaining insight into protein structure, dynamics and interactions. NMR spectroscopy was employed in this thesis to study the atomic structure and interaction mechanisms of C-terminal IgFLNs, which are known to house the majority of the filamin interaction sites. The structures of IgFLN single-domains 17 and 23 and IgFLN domain pairs 16-17 and 18-19 were determined using NMR spectroscopy. The structures of domain pairs 16 17 and 18 19 both revealed novel domain domain interaction modes of IgFLNs. NMR titrations were employed to characterize the interactions of filamins with glycoprotein Ibα, FilGAP, integrin β7 and dopamine receptors. Domain packing of IgFLN domain sextet 16 21 was further characterized using residual dipolar couplings and NMR relaxation analysis. This thesis demonstrates the versatility and potential of NMR spectroscopy in structural and functional studies of multi-domain proteins.
Resumo:
NMR spectroscopy enables the study of biomolecules from peptides and carbohydrates to proteins at atomic resolution. The technique uniquely allows for structure determination of molecules in solution-state. It also gives insights into dynamics and intermolecular interactions important for determining biological function. Detailed molecular information is entangled in the nuclear spin states. The information can be extracted by pulse sequences designed to measure the desired molecular parameters. Advancement of pulse sequence methodology therefore plays a key role in the development of biomolecular NMR spectroscopy. A range of novel pulse sequences for solution-state NMR spectroscopy are presented in this thesis. The pulse sequences are described in relation to the molecular information they provide. The pulse sequence experiments represent several advances in NMR spectroscopy with particular emphasis on applications for proteins. Some of the novel methods are focusing on methyl-containing amino acids which are pivotal for structure determination. Methyl-specific assignment schemes are introduced for increasing the size range of 13C,15N labeled proteins amenable to structure determination without resolving to more elaborate labeling schemes. Furthermore, cost-effective means are presented for monitoring amide and methyl correlations simultaneously. Residual dipolar couplings can be applied for structure refinement as well as for studying dynamics. Accurate methods for measuring residual dipolar couplings in small proteins are devised along with special techniques applicable when proteins require high pH or high temperature solvent conditions. Finally, a new technique is demonstrated to diminish strong-coupling induced artifacts in HMBC, a routine experiment for establishing long-range correlations in unlabeled molecules. The presented experiments facilitate structural studies of biomolecules by NMR spectroscopy.
Resumo:
Methylglyoxal (2-oxopropanal) is a compound known to contribute to the non-peroxide antimicrobial activity of honeys. The feasibility of using infrared spectroscopy as a predictive tool for honey antibacterial activity and methylglyoxal content was assessed. A linear relationship was found between methylglyoxal content (279–1755 mg/kg) in Leptospermum polygalifolium honeys and bacterial inhibition for Escherichiacoli (R2 = 0.80) and Staphylococcusaureus (R2 = 0.64). A good prediction of methylglyoxal (R2 0.75) content in honey was achieved using spectroscopic data from the mid infrared (MIR) range in combination with partial least squares regression. These results indicate that robust predictive equations could be developed using MIR for commercial application where the prediction of bacterial inhibition is needed to ‘value’ honeys with methylglyoxal contents in excess of 200 mg/kg.
Resumo:
Near infrared (NIR) spectroscopy was investigated as a potential rapid method of estimating fish age from whole otoliths of Saddletail snapper (Lutjanus malabaricus). Whole otoliths from 209 Saddletail snapper were extracted and the NIR spectral characteristics were acquired over a spectral range of 800–2780 nm. Partial least-squares models (PLS) were developed from the diffuse reflectance spectra and reference-validated age estimates (based on traditional sectioned otolith increments) to predict age for independent otolith samples. Predictive models developed for a specific season and geographical location performed poorly against a different season and geographical location. However, overall PLS regression statistics for predicting a combined population incorporating both geographic location and season variables were: coefficient of determination (R2) = 0.94, root mean square error of prediction (RMSEP) = 1.54 for age estimation, indicating that Saddletail age could be predicted within 1.5 increment counts. This level of accuracy suggests the method warrants further development for Saddletail snapper and may have potential for other fish species. A rapid method of fish age estimation could have the potential to reduce greatly both costs of time and materials in the assessment and management of commercial fisheries.