976 resultados para Brain imaging
Resumo:
Purpose: To compare the sparing potential of cerebral hemispheres with intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for whole-ventricular irradiation (WVI) and conventional whole-brain irradiation (WBI) in the management of localized central nervous system germ cell tumors (CNSGCTs). Methods and Materials: Ten cases of patients with localized CNSGCTs and submitted to WVI by use of IMRT with or without a ""boost"" to the primary lesion were selected. For comparison purposes, similar treatment plans were produced by use of 3D-CRT (WVI with or without boost) and WBI (opposed lateral fields with or without boost), and cerebral hemisphere sparing was evaluated at dose levels ranging from 2 Gy to 40 Gy. Results: The median prescription dose for WVI was 30.6 Gy (range, 25.2-37.5 Gy), and that for the boost was 16.5 Gy (range, 0-23.4 Gy). Mean irradiated cerebral hemisphere volumes were lower for WVI with IMRT than for 3D-CRT and were lower for WVI with 3D-CRT than for WBI. Intensity-modulated radiotherapy was associated with the lowest irradiated volumes, with reductions of 7.5%, 12.2%, and 9.0% at dose levels., compared with 3D-CRT. Intensity-modulated radiotherapy provided of 20, 30, and 40 Gy, respectively statistically significant reductions of median irradiated volumes at all dose levels (p = 0.002 or less). However, estimated radiation doses to peripheral areas of the body were 1.9 times higher with IMRT than with 3D-CRT. Conclusions: Although IMRT is associated with increased radiation doses to peripheral areas of the body, its use can spare a significant amount of normal central nervous system tissue compared with 3D-CRT or WBI in the setting of CNSGCT treatment. (C) 2010 Elsevier Inc.
Resumo:
Resting state functional magnetic resonance imaging (fMRI) reveals a distinct network of correlated brain function representing a default mode state of the human brain The underlying structural basis of this functional connectivity pattern is still widely unexplored We combined fractional anisotropy measures of fiber tract integrity derived from diffusion tensor imaging (DTI) and resting state fMRI data obtained at 3 Tesla from 20 healthy elderly subjects (56 to 83 years of age) to determine white matter microstructure e 7 underlying default mode connectivity We hypothesized that the functional connectivity between the posterior cingulate and hippocampus from resting state fMRI data Would be associated with the white matter microstructure in the cingulate bundle and fiber tracts connecting posterior cingulate gyrus With lateral temporal lobes, medial temporal lobes, and precuneus This was demonstrated at the p<0001 level using a voxel-based multivariate analysis of covariance (MANCOVA) approach In addition, we used a data-driven technique of joint independent component analysis (ICA) that uncovers spatial pattern that are linked across modalities. It revealed a pattern of white matter tracts including cingulate bundle and associated fiber tracts resembling the findings from the hypothesis-driven analysis and was linked to the pattern of default mode network (DMN) connectivity in the resting state fMRI data Out findings support the notion that the functional connectivity between the posterior cingulate and hippocampus and the functional connectivity across the entire DMN is based oil distinct pattern of anatomical connectivity within the cerebral white matter (C) 2009 Elsevier Inc All rights reserved
Resumo:
Depression is the most frequent psychiatric disorder in Parkinson`s disease (PD). Although evidence Suggests that depression in PD is related to the degenerative process that underlies the disease, further studies are necessary to better understand the neural basis of depression in this population of patients. In order to investigate neuronal alterations underlying the depression in PD, we studied thirty-six patients with idiopathic PD. Twenty of these patients had the diagnosis of major depression disorder and sixteen did not. The two groups were matched for PD motor severity according to Unified Parkinson Disease Rating Scale (UPDRS). First we conducted a functional magnetic resonance imaging (fMRI) using an event-related parametric emotional perception paradigm with test retest design. Our results showed decreased activation in the left mediodorsal (MD) thalamus and in medial prefrontall cortex in PD patients with depression compared to those without depression. Based upon these results and the increased neuron count in MD thalamus found in previous studies, we conducted a region of interest (ROI) guided voxel-based morphometry (VBM) study comparing the thalamic volume. Our results showed an increased volume in mediodorsal thalamic nuclei bilaterally. Converging morphological changes and functional emotional processing in mediodorsal thalamus highlight the importance of limbic thalamus in PD depression. In addition this data supports the link between neurodegenerative alterations and mood regulation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Background: Approximately 60% of meningiomas are associated with peritumoral edema. Various causative factors have been discussed in the literature. The objective of this study was to investigate the correlation of PTBE with clinical, radiologic, and surgical aspects and recurrence of meningiomas. Methods: Sixty-one patients with benign meningiomas were chosen for surgical treatment by the Group of Brain Tumors and Metastasis of the Department of Neurosurgery. All patients underwent complete surgical resection (Simpson grades I and 2), and those with atypical and malignant histopathologic grades were excluded. Tumors located in the cavernous sinus, tuberculum sellae, foramen magnum, ventricles, and petroclival region were excluded. Results: Edema extension had a positive correlation with the higher recurrence rates (P=.042) and with the presence of irregular margins (P<.011) on bivariate analysis. Meningiomas with larger edema sizes also showed correlation with large meningiomas (P=.035), and the ones with smaller edema sizes correlated with the tentorial location (P=.032). Multivariate analysis showed an association between PTBE and the presence of seizures (odds ratio, 3.469), large meningiomas (odds ratio, 15.977), and for each cubic centimeter added to its size, the risk of edema increased 1.082 times (odds ratio). Conclusion: Peritumoral brain edema may be related to the invading potential of meningiomas and may play a role in the recurrence potential of the tumor. As a consequence, it is reasonable to consider the presence of edema as an additional factor to be taken into account when mapping out strategies for the treatment of meningiomas. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In spite of considerable technical advance in MRI techniques, the optical resolution of these methods are still limited. Consequently, the delineation of cytoarchitectonic fields based on probabilistic maps and brain volume changes, as well as small-scale changes seen in MRI scans need to be verified by neuronanatomical/neuropathological diagnostic tools. To attend the current interdisciplinary needs of the scientific community, brain banks have to broaden their scope in order to provide high quality tissue suitable for neuroimaging- neuropathology/anatomy correlation studies. The Brain Bank of the Brazilian Aging Brain Research Group (BBBABSG) of the University of Sao Paulo Medical School (USPMS) collaborates with researchers interested in neuroimaging-neuropathological correlation studies providing brains submitted to postmortem MRI in-situ. In this paper we describe and discuss the parameters established by the BBBABSG to select and to handle brains for fine-scale neuroimaging-neuropathological correlation studies, and to exclude inappropriate/unsuitable autopsy brains. We tried to assess the impact of the postmortem time and storage of the corpse on the quality of the MRI scans and to establish fixation protocols that are the most appropriate to these correlation studies. After investigation of a total of 36 brains, postmortem interval and low body temperature proved to be the main factors determining the quality of routine MRI protocols. Perfusion fixation of the brains after autopsy by mannitol 20% followed by formalin 20% was the best method for preserving the original brain shape and volume, and for allowing further routine and immunohistochemical staining. Taken to together, these parameters offer a methodological progress in screening and processing of human postmortem tissue in order to guarantee high quality material for unbiased correlation studies and to avoid expenditures by post-imaging analyses and histological processing of brain tissue.
Wilson`s disease: two treatment modalities. Correlations to pretreatment and posttreatment brain MRI
Resumo:
Brain magnetic resonance imaging (MRI) studies on Wilson`s disease (WD) show lack of correlations between neurological and neuroimaging features. Long-term follow-up reports with sequential brain MRI in patients with neurological WD comparing different modalities of treatment are scarce. Eighteen patients with neurological WD underwent pretreatment and posttreatment brain MRI scans to evaluate the range of abnormalities and the evolution along these different periods. All patients underwent at least two MRI scans at different intervals, up to 11 years after the beginning of treatment. MRI findings were correlated with clinical picture, clinical severity, duration of neurological symptoms, and treatment with two different drugs. Patients were divided into two groups according to treatment: d-penicillamine (D-P), zinc (Zn), and Zn after the onset of severe intolerance to D-P. MRI scans before treatment showed, in all patients, hypersignal intensity lesions on T2- and proton-density-weighted images bilaterally and symmetrically at basal nuclei, thalamus, brain stem, cerebellum, brain cortex, and brain white matter. The most common neurological symptoms were: dysarthria, parkinsonism, dystonia, tremor, psychiatric disturbances, dysphagia, risus sardonicus, ataxia, chorea, and athetosis. From the neurological point of view, there was no difference on the evolution between the group treated exclusively with D-P and the one treated with Zn. Analysis of MRI scans with longer intervals after the beginning of treatment depicted a trend for neuroimaging worsening, without neurological correspondence, among patients treated with Zn. Neuroimaging pattern of evolution was more favorable for the group that received exclusively D-P.
Resumo:
Recent theories of panic disorder propose an extensive involvement of limbic system structures, such as the hippocampus, in the pathophysiology of this condition. Despite this, no prior study has examined exclusively the hippocampal neurochemistry in this disorder. The current study used proton magnetic resonance spectroscopy imaging ((1)H-MRSI) to examine possible abnormalities in the hippocampus in panic disorder patients. Participants comprised 25 panic patients and 18 psychiatrically healthy controls. N-acetylaspartate (NAA, a putative marker of neuronal viability) and choline (Cho, involved in the synthesis and degradation of cell membranes) levels were quantified relative to creatine (Cr, which is thought to be relatively stable among individuals and in different metabolic condition) in both right and left hippocampi. Compared with controls, panic patients demonstrated significantly lower NAA/Cr in the left hippocampus. No other difference was detected. This result is consistent with previous neuroimaging findings of hippocampal alterations in panic and provides the first neurochemical evidence suggestive of involvement of this structure in the disorder. Moreover, lower left hippocampal NAA/Cr in panic disorder may possibly reflect neuronal loss and/or neuronal metabolic dysfunction, and could be related to a deficit in evaluating ambiguous cues. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
BACKGROUND AND PURPOSE: Several morphometric MR imaging studies have investigated age- and sex-related cerebral volume changes in healthy human brains, most often by using samples spanning several decades of life and linear correlation methods. This study aimed to map the normal pattern of regional age-related volumetric reductions specifically in the elderly population. MATERIALS AND METHODS: One hundred thirty-two eligible individuals (67-75 years of age) were selected from a community-based sample recruited for the Sao Paulo Ageing and Health (SPAH) study, and a cross-sectional MR imaging investigation was performed concurrently with the second SPAH wave. We used voxel-based morphometry (VBM) to conduct a voxelwise search for significant linear correlations between gray matter (GM) volumes and age. In addition, region-of-interest masks were used to investigate whether the relationship between regional GM (rGM) volumes and age would be best predicted by a nonlinear model. RESULTS: VBM and region-of-interest analyses revealed selective foci of accelerated rGM loss exclusively in men, involving the temporal neocortex, prefrontal cortex, and medial temporal region. The only structure in which GM volumetric changes were best predicted by a nonlinear model was the left parahippocampal gyrus. CONCLUSIONS: The variable patterns of age-related GM loss across separate neocortical and temporolimbic regions highlight the complexity of degenerative processes that affect the healthy human brain across the life span. The detection of age-related Ill GM decrease in men supports the view that atrophy in such regions should be seen as compatible with normal aging.
Resumo:
Purpose: The purpose of our study was to compare signal characteristics and image qualities of MR imaging at 3.0 T and 1.5 T in patients with diffuse parenchymal liver disease. Materials and methods: 25 consecutive patients with diffuse parenchymal liver disease underwent abdominal MR imaging at both 3.0 T and 1.5 T within a 6-month interval. A retrospective study was conducted to obtain quantitative and qualitative data from both 3.0 T and 1.5 T MRI. Quantitative image analysis was performed by measuring the signal-to-noise ratios (SNRs) and the contrast-to-noise ratios (CNRs) by the Students t-test. Qualitative image analysis was assessed by grading each sequence on a 3- and 4-point scale, regarding the presence of artifacts and image quality, respectively. Statistical analysis consisted of the Wilcoxon signed-rank test. Results: the mean SNRs and CNRs of the liver parenchyma and the portal vein were significantly higher at 3.0 T than at 1.5 T on portal and equilibrium phases of volumetric interpolated breath-hold examination (VIBE) images (P < 0.05). The mean SNRs were significantly higher at 3.0 T than at 1.5 T on T1-weighted spoiled gradient echo (SGE) images (P < 0.05). However, there were no significantly differences on T2-weighted short-inversion-time inversion recovery (STIR) images. Overall image qualities of the 1.5 T noncontrast T1- and T2-weighted sequences were significantly better than 3.0 T (P < 0.01). In contrast, overall image quality of the 3.0 T post-gadolinium VIBE sequence was significantly better than 1.5 T (P< 0.01). Conclusions: MR imaging of post-gadolinium VIBE sequence at 3.0 T has quantitative and qualitative advantages of evaluating for diffuse parenchymal liver disease. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
BACKGROUND AND PURPOSE: There are 2 main hypotheses concerning the cause of mirror movements (MM) in Kallmann syndrome (KS): abnormal development of the primary motor system, involving the ipsilateral corticospinal tract, and lack of contralateral motor cortex inhibitory mechanisms, mainly through the corpus callosum. The purpose of our study was to determine white and gray matter volume changes in a KS population by using optimized voxel-based morphometry (VBM) and to investigate the relationship between the abnormalities and the presence of MM, addressing the 2 mentioned hypotheses. MATERIALS AND METHODS: T1-weighted volumetric images from 21 patients with KS and 16 matched control subjects were analyzed with optimized VBM. Images were segmented and spatially normalized, and these deformation parameters were then applied to the original images before the second segmentation. Patients were divided into groups with and without MM, and a t test statistic was then applied on a voxel-by-voxel basis between the groups and controls to evaluate significant differences. RESULTS: When considering our hypothesis a priori, we found that 2 areas of increased gray matter volume, in the left primary motor and sensorimotor cortex, were demonstrated only in patients with MM, when compared with healthy controls. Regarding white matter alterations, no areas of altered volume involving the corpus callosum or the projection of the corticospinal tract were demonstrated. CONCLUSION: The VBM study did not show significant white matter changes in patients with KS but showed gray matter alterations in keeping with a hypertrophic response to a deficient pyramidal decussation in patients with MM. In addition, gray matter alterations were observed in patients without MM, which can represent more complex mechanisms determining the presence or absence of this symptom.
Resumo:
Kallmann syndrome (KS), characterized by the association of hypogonadotropic hypogonadism and anosmia, may present many other phenotypic abnormalities, including neurologic features as involuntary movements, called mirror movements (MM). MM etiology probably involves a complex mechanism comprising corticospinal tract abnormal development associated with deficient contralateral motor cortex inhibitory system. In this study, in order to address previous hypotheses concerning MM etiology, we identified and quantified white matter (WM) alterations in 21 KS patients, comparing subjects with and without MM and 16 control subjects, using magnetization transfer ratio (MTR) and T2 relaxometry (R2). Magnetization transfer and 12 double-echo images were acquired in a 1.5 T system. MTR and R2 were calculated pixel by pixel to initially create individual maps, and then, group average maps, co-registered with MNI305 stereotaxic coordinate system. After analysis of selected regions of interest, we demonstrated areas with higher 12 relaxation time and lower MTR values in KS patients, with and without MM, differently involving corticospinal tract projection, frontal lobes and corpus callosum. Higher MTR was observed only in pyramidal decussation when compared in both groups of patients with controls. In conclusion, we demonstrated that patients with KS have altered WM areas, presenting in a different manner in patients with and without MM. These data suggest axonal loss or disorganization involving abnormal pyramidal tracts and other associative/connective areas, relating to the presence or absence of MM. We also found a different pattern of alteration in pyramidal decussation, which can represent the primary area of neuronal disarrangement. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Delta-9-tetrahydrocannabinol (Delta-9-THC) and Cannabidiol (CBD), the two main ingredients of the Cannabis sativa plant have distinct symptomatic and behavioral effects. We used functional magnetic resonance imaging (fMRI) in healthy volunteers to examine whether Delta-9-THC and CBD had opposite effects on regional brain function. We then assessed whether pretreatment with CBD can prevent the acute psychotic symptoms induced by Delta-9-THC. Fifteen healthy men with minimal earlier exposure to cannabis were scanned while performing a verbal memory task, a response inhibition task, a sensory processing task, and when viewing fearful faces. Subjects were scanned on three occasions, each preceded by oral administration of Delta-9-THC, CBD, or placebo. BOLD responses were measured using fMRI. In a second experiment, six healthy volunteers were administered Delta-9-THC intravenously on two occasions, after placebo or CBD pretreatment to examine whether CBD could block the psychotic symptoms induced by Delta-9-THC. Delta-9-THC and CBD had opposite effects on activation relative to placebo in the striatum during verbal recall, in the hippocampus during the response inhibition task, in the amygdala when subjects viewed fearful faces, in the superior temporal cortex when subjects listened to speech, and in the occipital cortex during visual processing. In the second experiment, pretreatment with CBD prevented the acute induction of psychotic symptoms by Delta-9-tetrahydrocannabinol. Delta-9-THC and CBD can have opposite effects on regional brain function, which may underlie their different symptomatic and behavioral effects, and CBD`s ability to block the psychotogenic effects of Delta-9-THC. Neuropsychopharmacology (2010) 35, 764-774; doi:10.1038/npp.2009.184; published online 18 November 2009
Resumo:
BACKGROUND AND PURPOSE: The use of Onyx in the treatment of intracranial AVMs has increased the cure rate of endovascular embolization compared with the use of liquid adhesive agents. Inadvertent occlusion of the draining veins before the complete exclusion of the nidus constitutes a major risk of bleeding. We report a case series using the technique of double simultaneous arterial catheterization as an approach to achieve the complete, exclusion of the nidus before reaching the venous drainage, through a more controlled hemodynamic filling. MATERIALS AND METHODS: Between April 2008 and November 2009, 17 patients with brain AVMs were treated by the DACT. The mean age of the patients was 32.7 years (range, 6-54 years), with 9 females and 8 males. The clinical onset was characterized by intracranial hemorrhage in 8 patients and by seizures in 7. The size of the AVMs ranged from 13 to 54 mm (average, 26.2 mm). The DACT was always used with the objective of curing the AVM. RESULTS: All 17 patients completed the EVT. The average number of sessions conducted was 1.4 (range, 1-3 sessions), with the average injection amount of 6.9 mL of Onyx (range, 2-25.2 mL). Sixteen AVMs (94.1%) were angiographically cured by embolization. Clinical complications occurred in 2 patients (11.7%); 1 of these was permanent (5.9%). No deaths were registered. CONCLUSIONS: This preliminary series shows that the DACT presents satisfactory results when used with curative intent.
Resumo:
Hypertension afflicts 25% of the general population and over 50% of the elderly. In the present work, arterial spin labeling MRI was used to non-invasively quantify regional cerebral blood flow (CBE), cerebrovascular resistance and CO(2) reactivity in spontaneously hypertensive rats (SHR) and in normotensive Wistar Kyoto rats (WKY), at two different ages (3 months and 10 months) and under the effects of two anesthetics, alpha-chloralose and 2% isoflurane (1.5 MAC). Repeated CBE measurements were highly consistent, differing by less than 10% and 18% within and across animals, respectively. Under alpha-chloralose, whole brain CBE at normocapnia did not differ between groups (young WKY: 61 3 ml/100 g/min; adult WKY: 62 +/- 4 ml/100 g/min; young SHR: 70 +/- 9 ml/100 g/min: adult SHR: 69 8 ml/100 g/min), indicating normal cerebral autoregulation in SHR. At hypercapnia, CBE values increased significantly, and a linear relationship between CBE and PaCO(2) levels was observed. In contrast, 2% isoflurane impaired cerebral autoregulation. Whole brain CBE in SHR was significantly higher than in WKY rats at normocapnia (young SHR: 139 +/- 25 ml/100 g/min; adult SHR: 104 +/- 23 ml/100 g/min; young WKY: 55 +/- 9 ml/100 g/min; adult WKY: 71 +/- 19 ml/100 g/min). CBE values increased significantly with increasing CO(2): however, there was a clear saturation of CBF at PaCO(2) levels greater than 70 mm Hg in both young and adult rats, regardless of absolute CBE values, suggesting that isoflurane interferes with the vasoclilatory mechanisms of CO(2). This behavior was observed for both cortical and subcortical structures. Under either anesthetic, CO(2) reactivity values in adult SHR were decreased, confirming that hypertension, when combined with age, increases cerebrovascular resistance and reduces cerebrovascular compliance. Published by Elsevier Inc.
Resumo:
Studies of delayed nonmatching-to-sample (DNMS) performance following lesions of the monkey cortex have revealed a critical circuit of brain regions involved in forming memories and retaining and retrieving stimulus representations. Using event-related functional magnetic resonance imaging (fMRI), we measured brain activity in 10 healthy human participants during performance of a trial-unique visual DNMS task using novel barcode stimuli. The event-related design enabled the identification of activity during the different phases of the task (encoding, retention, and retrieval). Several brain regions identified by monkey studies as being important for successful DNMS performance showed selective activity during the different phases, including the mediodorsal thalamic nucleus (encoding), ventrolateral prefrontal cortex (retention), and perirhinal cortex (retrieval). Regions showing sustained activity within trials included the ventromedial and dorsal prefrontal cortices and occipital cortex. The present study shows the utility of investigating performance on tasks derived from animal models to assist in the identification of brain regions involved in human recognition memory.