977 resultados para Botryosphaeria rhodina isolates
Resumo:
Twenty-nine isolates of the ectomycorrhiza fungus Pisolithus sp. from different geographical and host origins were tested for their ability to form ectomycorrhizae on Eucalyptus grandis and E. urophylla seedlings under greenhouse conditions. The ectomycorrhiza-forming capacity of isolates varied greatly from one eucalypt species to the other. All isolates from Eucalyptus, nine from Pinus spp. and two isolates from unknown hosts formed mycorrhizae with E. grandis and E. urophylla. Root colonization rates varied from 0 to 5.2 % for all Pinus isolates and those from unknown hosts. Colonization rates for these isolates were lower than those observed for Eucalyptus isolates (0.8 to 89.4 %). Three isolates from unknown hosts formed mycorrhizae with neither Eucalyptus species. The main characteristic for distinguishing Pinus from Eucalyptus isolates was mantle color. These data corroborate previous results obtained in our laboratory indicating that the isolates tested represent at least two distinct different species within the genus Pisolithus.
Resumo:
Staphylococcus aureus is a major bovine mastitis pathogen. Although the reported antimicrobial resistance was generally low, the emergence of new genetic clusters in bovine mastitis requires examination of the link between antimicrobial resistance and genotypes. Here, amplified fragment length polymorphism (AFLP) profiles and standard antimicrobial resistance profiles were determined in order to characterize a total of 343 S. aureus cow mastitis isolates from two geographically close regions of Switzerland and France. AFLP profiles revealed similar population compositions in the two regions, with 4 major clusters (C8, C20, C97, and C151), but the proportions of isolates in each cluster significantly diverged between the two countries (P = 9.2 × 10⁻⁹). Antimicrobial resistance was overall low (< 5% resistance to all therapeutically relevant molecules), with the exception of penicillin resistance, which was detected in 26% of the isolates. Penicillin resistance proportions differed between clusters, with only 1 to 2% of resistance associated with C20 and C151 and up to 70% associated with bovine C97. The prevalence of C20 and C8 was unexpectedly high and requires further investigation into the mechanism of adaptation to the bovine host. The strong association of penicillin resistance with few clusters highlights the fact that the knowledge of local epidemiology is essential for rational choices of antimicrobial treatment in the absence of susceptibility testing. Taken together, these observations argue in favor of more routine scrutiny of antimicrobial resistance and antibiotic-resistant clones in cattle and the farm environment.
Resumo:
A total of 189 Candida albicans isolates have been typed by multilocus enzyme electrophoresis. The results obtained confirm the clonal mode of reproduction of C. albicans. The C. albicans populations found in the oropharynx of human immunodeficiency virus (HIV)-infected patients, in the oropharynx of healthy carriers, or in association with invasive candidiasis could not be distinguished. No clone or group of clones could be associated with the appearance of clinical disorders or with a reduced in vitro susceptibility to the antifungal agent fluconazole. Multiple and sequential oral isolates from 24 HIV-infected patients were also typed by restriction enzyme analysis with the enzymes EcoRI and HinfI and by use of the Ca3 repetitive probe. The results obtained by the combination of all three typing methods show that all but one patient each carried a unique major C. albicans clone in their oropharynx. The 21 patients with sequential isolates had the same C. albicans clones in their throats during recurrent oropharyngeal candidiasis episodes, independently of clinical status or of changes of in vitro susceptibility to fluconazole. Finally, several isolates of the same C. albicans clone found simultaneously in the oropharynx of a patient may present different levels of susceptibility to fluconazole.
Resumo:
Streptococcus uberis is an environmental pathogen commonly causing bovine mastitis, an infection that is generally treated with penicillin G. No field case of true penicillin-resistant S. uberis (MIC > 16 mg/liter) has been described yet, but isolates presenting decreased susceptibility (MIC of 0.25 to 0.5 mg/liter) to this drug are regularly reported to our laboratory. In this study, we demonstrated that S. uberis can readily develop penicillin resistance in laboratory-evolved mutants. The molecular mechanism of resistance (acquisition of mutations in penicillin-binding protein 1A [PBP1A], PBP2B, and PBP2X) was generally similar to that of all other penicillin-resistant streptococci described so far. In addition, it was also specific to S. uberis in that independent resistant mutants carried a unique set of seven consensus mutations, of which only one (Q(554)E in PBP2X) was commonly found in other streptococci. In parallel, independent isolates from bovine mastitis with different geographical origins (France, Holland, and Switzerland) and presenting a decreased susceptibility to penicillin were characterized. No mosaic PBPs were detected, but they all presented mutations identical to the one found in the laboratory-evolved mutants. This indicates that penicillin resistance development in S. uberis might follow a stringent pathway that would explain, in addition to the ecological niche of this pathogen, why naturally occurring resistances are still rare. In addition, this study shows that there is a reservoir of mutated PBPs in animals, which might be exchanged with other streptococci, such as Streptococcus agalactiae, that could potentially be transmitted to humans.
Resumo:
We describe a calorimetric assay for the detection of methicillin-resistant Staphylococcus aureus (MRSA) within 5 h. Microbial heat was calculated in culture with and without cefoxitin. Among 30 genetically distinct clinical isolates, 19/20 MRSA (95%) and 10/10 methicillin-susceptible Staphylococcus aureus (100%) were correctly identified. Microcalorimetry may be useful for rapid MRSA screening.
Resumo:
We conducted a molecular study of MRSA isolated in Swiss hospitals, including the first five consecutive isolates recovered from blood cultures and the first ten isolates recovered from other sites in newly identified carriers. Among 73 MRSA isolates, 44 different double locus sequence typing (DLST) types and 32 spa types were observed. Most isolates belonged to the NewYork/Japan, the UK-EMRSA-15, the South German and the Berlin clones. In a country with a low to moderate MRSA incidence, inclusion of non-invasive isolates allowed a more accurate description of the diversity.
Resumo:
Biological N fixation in forage legumes is an important alternative to reduce pasture degradation, and is strongly influenced by the inoculant symbiotic capability. This paper evaluates the effectiveness of Calopo (Calopogonium mucunoides) rhizobial isolated from soil under three vegetation covers of an Argissolo Vermelho-Amarelo of the Dry Forest Zone of Pernambuco. An experiment was conducted evaluating 25 isolates, aside from 5 uninoculated controls with 0; 309; 60; 90 and 120 kg ha-1 N, and a treatment inoculated with the SEMIA 6152 strain. The first cut was performed 45 days after inoculation and a second and third cut after 45-day-intervals. Shoot N content was quantified at all cuts. Shoot dry mass was affected by N rates at all cuts. Shoot dry mass increased from the first to the second cut in inoculated plants. There was no difference between rhizobial isolates from the different plant covers for any of the variables. Most variables were significantly and positively correlated.
Resumo:
Rats with periodontitis and catheter-induced aortic valve vegetations underwent dental extractions. Cultures of blood obtained 1 min later showed polymicrobial bacteremia in 19 of 19 rats, mostly due to viridans streptococci (18 of 19), Morganella (15 of 19), group G streptococci (13 of 19), and Staphylococcus aureus (10 of 19). Viridans streptococci circulated in higher numbers than did group G streptococci and S. aureus (P less than .01). Three days after dental extractions, 18 of 20 rats had endocarditis. Fifteen (83%) of 18 infections were due to group G streptococci, 9 (50%) of 18 were due to S. aureus, and 2 (11%) of 18 were due to viridans streptococci (P less than .05). In vitro, adherence to platelet-fibrin matrices of endocarditis strain 8 of group G streptococcus was two times greater than that of endocarditis strain S. aureus 23 and three to four times greater than that of Streptococcus sanguis 44 and Morganella morganii 93 (P less than 10(-5)). The inoculum size that produced endocarditis in 90% of rats after iv challenge was 10(5) cfu for group G streptococcus strain 8 and 10(7) for S. sanguis 44.
Resumo:
Carbapenemases should be accurately and rapidly detected, given their possible epidemiological spread and their impact on treatment options. Here, we developed a simple, easy and rapid matrix-assisted laser desorption ionization-time of flight (MALDI-TOF)-based assay to detect carbapenemases and compared this innovative test with four other diagnostic approaches on 47 clinical isolates. Tandem mass spectrometry (MS-MS) was also used to determine accurately the amount of antibiotic present in the supernatant after 1 h of incubation and both MALDI-TOF and MS-MS approaches exhibited a 100% sensitivity and a 100% specificity. By comparison, molecular genetic techniques (Check-MDR Carba PCR and Check-MDR CT103 microarray) showed a 90.5% sensitivity and a 100% specificity, as two strains of Aeromonas were not detected because their chromosomal carbapenemase is not targeted by probes used in both kits. Altogether, this innovative MALDI-TOF-based approach that uses a stable 10-μg disk of ertapenem was highly efficient in detecting carbapenemase, with a sensitivity higher than that of PCR and microarray.
Resumo:
BACKGROUND: Using multinational collections of methicillin-susceptible Staphylococcus aureus (MSSA) isolates from infective endocarditis (IE) and soft tissue infections (STIs), we sought to (1) validate the finding that S. aureus in clonal complex (CC) 30 is associated with hematogenous complications and (2) test the hypothesis that specific genetic characteristics in S. aureus are associated with infection severity. METHODS: IE and STI isolates from 2 cohorts were frequency matched by geographic origin. Isolates underwent spa typing to infer CC and multiplex polymerase chain reaction for presence of virulence genes. RESULTS: 114 isolate pairs were genotyped. IE isolates were more likely to be CC30 (19.5% vs 6.2%; P = .005) and to contain 3 adhesins (clfB, cna, map/eap; P < .0001 for all) and 5 enterotoxins (tst, sea, sed, see, and sei; P ≤ .005 for all). CC30 isolates were more likely to contain cna, tst, sea, see, seg, and chp (P < .05 for all). CONCLUSIONS: MSSA IE isolates were significantly more likely to be CC30 and to possess a distinct repertoire of virulence genes than MSSA STI isolates from the same region. The genetic basis of this association requires further study.
Resumo:
Phenotypic virulence analysis was made on population of Pyricularia grisea isolates collected from 10 upland cultivars in three distinct rice breeding sites, with the objective of studying the degree of similarity in the phenotypic virulence among the isolates, the composition of races, and their virulence pattern. Sixteen races were identified based on the reaction type on eight standard international differentials, the predominant ones being IB9 and IB41. The virulence frequency was high on IAC47 and IAC165 among medium and early maturing cultivars, respectively. The frequency of isolates virulent was greater on upland rice cultivars (51.1%) than on irrigated rice cultivars (21.8%). Both virulent and avirulent isolates were present in the population of P. grisea to the known genes in the near isogenic lines. Of72test isolates, 94.4% were virulent for genes Pi3 and Pi4a. Thevirulence frequencies were relatively lower in decreasing order on Pi1, Pi4b and Pi2. Thecoefficient of similarity ranged from 0.28 to1.0 among the isolates pertaining to different races, while within the race IB9, it varied from 0.56 to1.0. Considering the coefficient of similarity of 0.81, 72% of isolates of race IB9 exhibited similar pattern of virulence.
Resumo:
BACKGROUND: The P-type II ATPase gene family encodes proteins with an important role in adaptation of the cell to variation in external K+, Ca2+ and Na2+ concentrations. The presence of P-type II gene subfamilies that are specific for certain kingdoms has been reported but was sometimes contradicted by discovery of previously unknown homologous sequences in newly sequenced genomes. Members of this gene family have been sampled in all of the fungal phyla except the arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota), which are known to play a key-role in terrestrial ecosystems and to be genetically highly variable within populations. Here we used highly degenerate primers on AMF genomic DNA to increase the sampling of fungal P-Type II ATPases and to test previous predictions about their evolution. In parallel, homologous sequences of the P-type II ATPases have been used to determine the nature and amount of polymorphism that is present at these loci among isolates of Glomus intraradices harvested from the same field. RESULTS: In this study, four P-type II ATPase sub-families have been isolated from three AMF species. We show that, contrary to previous predictions, P-type IIC ATPases are present in all basal fungal taxa. Additionally, P-Type IIE ATPases should no longer be considered as exclusive to the Ascomycota and the Basidiomycota, since we also demonstrate their presence in the Zygomycota. Finally, a comparison of homologous sequences encoding P-type IID ATPases showed unexpectedly that indel mutations among coding regions, as well as specific gene duplications occur among AMF individuals within the same field. CONCLUSION: On the basis of these results we suggest that the diversification of P-Type IIC and E ATPases followed the diversification of the extant fungal phyla with independent events of gene gains and losses. Consistent with recent findings on the human genome, but at a much smaller geographic scale, we provided evidence that structural genomic changes, such as exonic indel mutations and gene duplications are less rare than previously thought and that these also occur within fungal populations.
Resumo:
1. Accumulating evidence indicates that plant resistance against above-ground herbivores can be affected by the presence of arbuscular mycorrhizal fungi (AMF) in association with the host plant. Little is known, however, about how AMF composition can influence herbivore choice to feed on a particular plant. 2. Unravelling the preference-performance hypothesis in a multitrophic context is needed to expand our knowledge of complex multitrophic interactions in natural systems. If given mycorrhizal fungal genotypes increase attractiveness for a herbivore (reduced plant resistance), then the benefits of increased unpalatability provided by the mycorrhizal fungi (increased plant resistance) might be outweighed by the increased herbivore recruitment. 3. This was addressed by designing three experiments to test the effects of different AMF genotypes, inoculated either alone or in combination, to measure intraspecific AMF effects on plant resistance and insect herbivore preference. Using strawberry (Fragaria vesca L.) plants that were colonised by eight different combinations of Rhizophagus irregularis isolates, we measured effects on plant growth, insect growth and survival, as well as feeding preferences of a generalist herbivore caterpillar (Spodoptera littoralis Boisduval). 4. Overall, it was found that: (i) AMF influenced plant resistance in an AMF genotype-specific manner; (ii) some AMF inoculations decreased insect performance; (iii) insects preferentially chose to feed more on leaves originating from non-mycorrhizal plants; but also that (iv) in a whole plant bioassay, insects preferentially chose the biggest plant, regardless of their mycorrhizal status. 5. Therefore, AMF-mediated trade-offs between growth and resistance against herbivores have been shown. Such trade-offs, particularly driven by plant attractiveness to herbivores, buffer the positive effects of the mycorrhizal symbiosis on enhanced plant growth.
Resumo:
Cutaneous Leishmaniasis (CL) caused by Leishmania aethiopica is a public health and social problem with a sequel of severe and mutilating skin lesions. It is manifested in three forms: localized CL (LCL), mucosal CL (MCL) and diffuse CL (DCL). Unresponsiveness to sodium stibogluconate (Sb(V)) is common in Ethiopian CL patients. Using the amastigote-macrophage in vitro model the susceptibility of 24 clinical isolates of L. aethiopica derived from untreated patients was investigated. Eight strains of LCL, 9 of MCL, and 7 of DCL patients together with a reference strain (MHOM/ET/82/117/82) were tested against four antileishmanial drugs: amphotericin B, miltefosine, Sb(V) and paromomycin. In the same order of drugs, IC(50) (μg/ml±SD) values for the 24 strains tested were 0.16±0.18, 5.88±4.79, 10.23±8.12, and 13.63±18.74. The susceptibility threshold of isolates originating from the 3 categories of patients to all 4 drugs was not different (p>0.05). Maximal efficacy was superior for miltefosine across all the strains. Further susceptibility test could validate miltefosine as a potential alternative drug in cases of sodium stibogluconate treatment failure in CL patients.
Resumo:
Partial nucleotide sequences of five tomato infecting Begomovirus isolates were determined from DNA-A fragments, corresponding to the 5' region of the replication associated protein gene, the intergenic region and the 5' region of the coat protein gene. Isolate DFM shared 95% identity with Tomato mottle leaf curl virus (TMoLCV), isolates 34, PA-05, and Ta4 were 88% identical to Tomato yellow vein streak virus and isolate DF-BR3 shared 77% identity with TMoLCV. Recombination analysis indicated that isolate DF-BR3 was a chimaera, and it provided evidence that there is a complex and actively recombining population of tomato infecting begomoviruses in Brazil.