874 resultados para Blends and mechanical properties
Resumo:
Morphology and mechanical properties of polypropylene (PP)/high density polyethylene (HDPE) blends modified by ethylene-propylene copolymers (EPC) with residual PE crystallinity were investigated. The EPC showed different interfacial behavior in PP/HDPE blends of different compositions. A 25/75 blend of PP/HDPE (weight ratio) showed improved tensile strength and elongation at break at low EPC content (5 wt %). For the PP/HDPE = 50/50 blend, the presence of the EPC component tended to make the PP dispersed phase structure transform into a cocontinuous one, probably caused by improved viscosity matching of the two components. Both tensile strength and elongation at break were improved at EPC content of 5 wt %. For PP/HDPE 75/25 blends, the much smaller dispersed HDPE phase and significantly improved elongation at break resulted from compatibilization by EPC copolymers. (C) 1995 John Wiley & Sons, Inc.
Resumo:
The blends of low molecular weight triacetin (TAC) and oligomeric poly(1,3-butylene glycol adipate) (PBGA) were used as multiple plasticizers to lubricate poly(lactic acid) (PLA) in this study. The thermal and mechanical properties of plasticized polymers were investigated by means of dynamic mechanical analysis and differential scanning calorimetry. Atomic force microscopy (AFM) was used to analyze the morphologies of the blends. Multiple plasticizers were effective in lowering the glass transition temperature (T-g) and the melting temperature (T-m) of PLA. Moreover, crystallinity of PLA increased with increasing the con-tent of multiple plasticizers. Tensile strength of the blends decreased following the increasing of the plasticizers, but increased in elongation at break. AFM topographic images showed that the multiple plasticizers dispersed between interfibrillar regions. Moreover, the fibrillar crystallite formed the quasicrosslinkings, which is another cause for the increase in elongation at break.
Resumo:
The paper studies the morphology and mechanical properties of immiscible binary blends of the nylon 1010 and HIPS through the radiation crosslinking method. In this blend, the HIPS particles were the dispersed phases in the nylon 1010 matrix. With increasing of dose, the elastic modulus increased, However, the tensile strength. elongation at bleak and the energy of fracture increased to a maximum at a dose of 0.34 MGy, then reduced with the increasing of dose. SEM photographs show that the hole sizes are not changed obviously at low dose and at high dose, remnants that cannot be dissolved in formic acid and THF can be observed in the holes and on the surface. TEM photographs showed that radiation destroys the rubber phases in the polymer blend. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The effect of the content of a copolymer consisting of high impact polystyrene grafted with maleic anhydride (HIPS-g-MA) on morphological and mechanical properties of PA1010/HIPS blends has been studied. Blend morphologies were controlled by adding HIPS-g-MA during melt processing, thus the dispersion of the HIPS phase and interfacial adhesion between the domains and matrices in these blends were changed obviously. The weight fractions of HIPS-g-MA in the blends increased from 2.5 to 20, then much finer dispersions of discrete HIPS phase with average domain sizes decreased from 6.1 to 0.1 mu m were obtained. It was found that a compatibilizer, a graft copolymer of HIPS-g-MA and PA1010 was synthesized in situ during the melt mixing of the blends. The mechanical properties of compatibilized blends were obviously better than those of uncompatibilized PA1010/HIPS blends. These behaviors could be attributed to the chemical interactions between the two components of PA1010 and HIPS-g-MA and good dispersion in PA1010/HIPS/HIPS-g-MA blends. Evidence of reactions in the blends was seen in the morphology and mechanical behaviour of the solid. The blend containing 5 wt % HIPS-g-MA component exhibited outstanding toughness. (C) 1999 Kluwer Academic Publishers.
Resumo:
Blends of chlorobutyl rubber (CIIR) with two grades of ethylene-propylene diene monomer rubber (EPDM) were prepared and the effect of blend ratio on the cure characteristics, hot air ageing resistance, steam ageing resistance, and mechanical properties were evaluated. The blend of CIIR with EPDM grade 301 T showed additive behavior and the blend with the other grade of EPDM (NDR 4640) showed synergistic behavior.
Resumo:
It has been demonstrated that most cells of the body respond to osmotic pressure in a systematic manner. The disruption of the collagen network in the early stages of osteoarthritis causes an increase in water content of cartilage which leads to a reduction of pericellular osmolality in chondrocytes distributed within the extracellular environment. It is therefore arguable that an insight into the mechanical properties of chondrocytes under varying osmotic pressure would provide a better understanding of chondrocyte mechanotransduction and potentially contribute to knowledge on cartilage degeneration. In this present study, the chondrocyte cells were exposed to solutions with different osmolality. Changes in their dimensions and mechanical properties were measured over time. Atomic Force Microscopy (AFM) was used to apply load at various strain-rates and the force-time curves were logged. The thin-layer elastic model was used to extract the elastic stiffness of chondrocytes at different strain-rates and at different solution osmolality. In addition, the porohyperelastic (PHE) model was used to investigate the strain-rate dependent responses under the loading and osmotic pressure conditions. The results revealed that the hypo-osmotic external environment increased chondrocyte dimensions and reduced Young’s modulus of the cells at all strain-rates tested. In contrast, the hyper-osmotic external environment reduced dimensions and increased Young’s modulus. Moreover, by using the PHE model coupled with inverse FEA simulation, we established that the hydraulic permeability of chondrocytes increased with decreasing extracellular osmolality which is consistent with previous work in the literature. This could be due to a higher intracellular fluid volume fraction with lower osmolality.
Resumo:
Fine particles of barium ferrite (BaFe12O19) were synthesized by the conventional ceramic technique. These materials were then characterized by the X-ray diffraction method and incorporated in the natural rubber matrix according to a specific receipe for various loadings of ferrite. The rubber ferrite composites (RFC) thus obtained have several applications, and have the advantage of molding into complex shapes. For applications such as microwave absorbers, these composites should have an appropriate dielectric strength with the required mechanical and magnetic properties. The N330 (HAF) carbon black has been added to these RFCs for various loadings to modify the dielectric and mechanical properties. In this article we report the effect of carbon black on the mechanical and dielectric properties of these RFCs. Both the mechanical and dielectric properties can be enhanced by the addition of an appropriate amount of carbon black
Resumo:
An organic-inorganic hybrid coating was developed to improve the corrosion resistance of the aluminum alloy AA 2024-T3. Organic and inorganic coatings derived from glycidoxypropyltrimethoxysilane (GPTMS) and aluminum tri-sec-butoxide Al((OBu)-Bu-s)(3), with different cerium contents, were deposited onto aluminum by dip-coating process. Corrosion resistance and mechanical properties were investigated by electrochemical impedance measurements and nano-indentation respectively. An optimal cerium concentration of 0.01 M was evidenced. To correlate and explain the hybrid coating performances in relation to the cerium content, NMR experiments were performed. It has been shown that when the cerium concentration in the hybrid is higher than 0.01 M there are important modifications in the hybrid structure that account for the mechanical properties and anti-corrosion behavior of the sol-gel coating. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents results describing the physical, mechanical, and thermal properties (melt flow index - MFI and oxidative induction time - OIT) of high density polyethylene and poly (vinyl chloride) after weathering exposure (6, 12, 18, and 30 months). The materials exposed were geomembranes of two thicknesses: 1.0 and 2.0 mm (PVC) and 0.8 and 2.5 mm (HDPE). The climate parameters (average) obtained were 25 degrees C (temperature), 93 mm (precipitation), 66% (relative humidity), and 19 MJ/m(2). day (intensity of global radiation). Some results showed, for instance, that the behavior of the geomembranes changed after the exposures. A few minor variations in physical properties occurred. The density and thickness, for instance, varied 0.5-1.0% (average) for both the PVC and HDPE geomembranes. The mechanical properties changed as a function of the period of exposure. In general, some decreases were verified by the deformation of PVC. The samples became more rigid. In contrast, HDPE geomembranes became more ductile. Despite the variations in elasticity, some increases in deformability were verified. An MFI test showed some degradation in HDPE geomembranes. OIT tests revealed small values for both intact and exposed samples.
Resumo:
The present work aims to study the microstructure and mechanical properties of titanium alloys, widely used in the manufacture of orthopedic implants in order to compare a new manufacturing technology of implants, rapid prototyping in metals with conventional manufacturing processes. Rapid prototyping is being used in many areas of human knowledge to assist in the study and often in the manufacture of components for their own use. Nowadays with the advancement of software and equipment such as computed tomography and magnetic resonance imaging, we can reproduce any part of the human body in three-dimensional images with great perfection and it is used in the reproduction of implants, scaffolds, material aid and preparation in surgery. This work aims to do: A comparison between the microstructure of the alloy in the two manufacturing processes (prototyping and conventional), showing the grain size, the nature, form, quantity, and distribution of various ingredients or certain inclusions and study of mechanical properties of titanium in both cases.
Resumo:
This work presents the main experimental results obtained from the study of plaster test pieces and boards with addition of various volumetric rubber fractions from mechanical grinding of end-of-life tires (ELTs), in three different particle size gradations. It includes a description of the materials employed, and their proportions. The physical and mechanical properties, as well as the thermal conductivity and acoustic insulation properties are analyzed. Experimental results obtained for specimens with addition of recycled rubber are compared with similar ones, carried out on specimens of plaster of identical features without any addition, evaluating the influence of the particle size and mixture proportions. An improvement in thermal and acoustic performance has been obtained as well as a reduction in density, and as a result, some constructive applications for paving and slabs in rehabilitation works are proposed.
Resumo:
Since the initial launch of silicone hydrogel lenses, there has been a considerable broadening in the range of available commercial material properties. The very mobile silicon–oxygen bonds convey distinctive surface and mechanical properties on silicone hydrogels, in which advantages of enhanced oxygen permeability, reduced protein deposition, and modest frictional interaction are balanced by increased lipid and elastic response. There are now some 15 silicone hydrogel material variants available to practitioners; arguably, the changes that have taken place have been strongly influenced by feedback based on clinical experience. Water content is one of the most influential properties, and the decade has seen a progressive rise from lotrafilcon-A (24%) to efrofilcon-A (74%). Moduli have decreased over the same period from 1.4 to 0.3 MPa, but not solely as a result of changes in water content. Surface properties do not correlate directly with water content, and ingenious approaches have been used to achieve desirable improvements (e.g., greater lubricity and lower contact angle hysteresis). This is demonstrated by comparing the hysteresis value of the earliest (lotrafilcon-A, >40°) and most recent (delefilcon-A, <10°) coated silicone hydrogels. Although wettability is important, it is not of itself a good predictor of ocular response because this involves a much wider range of physicochemical and biochemical factors. The interference of the lens with ocular dynamics is complex leading separately to tissue–material interactions involving anterior and posterior lens surfaces. The biochemical consequences of these interactions may hold the key to a greater understanding of ocular incompatibility and end of day discomfort.
Resumo:
The morphology, chemical composition, and mechanical properties in the surface region of α-irradiated polytetrafluoroethylene (PTFE) have been examined and compared to unirradiated specimens. Samples were irradiated with 5.5 MeV 4He2+ ions from a tandem accelerator to doses between 1 × 106 and 5 × 1010 Rad. Static time-of-flight secondary ion mass spectrometry (ToF-SIMS), using a 20 keV C60+ source, was employed to probe chemical changes as a function of a dose. Chemical images and high resolution spectra were collected and analyzed to reveal the effects of a particle radiation on the chemical structure. Residual gas analysis (RGA) was utilized to monitor the evolution of volatile species during vacuum irradiation of the samples. Scanning electron microscopy (SEM) was used to observe the morphological variation of samples with increasing a particle dose, and nanoindentation was engaged to determine the hardness and elastic modulus as a function of a dose. The data show that PTFE nominally retains its innate chemical structure and morphology at a doses <109 Rad. At α doses ≥109 Rad the polymer matrix experiences increased chemical degradation and morphological roughening which are accompanied by increased hardness and declining elasticity. At α doses >1010 Rad the polymer matrix suffers severe chemical degradation and material loss. Chemical degradation is observed in ToF-SIMS by detection of ions that are indicative of fragmentation, unsaturation, and functionalization of molecules in the PTFE matrix. The mass spectra also expose the subtle trends of crosslinking within the α-irradiated polymer matrix. ToF-SIMS images support the assertion that chemical degradation is the result of a particle irradiation and show morphological roughening of the sample with increased a dose. High resolution SEM images more clearly illustrate the morphological roughening and the mass loss that accompanies high doses of a particles. RGA confirms the supposition that the outcome of chemical degradation in the PTFE matrix with continuing irradiation is evolution of volatile species resulting in morphological roughening and mass loss. Finally, we reveal and discuss relationships between chemical structure and mechanical properties such as hardness and elastic modulus.
Resumo:
Light curable dimethacrylate resin composites undergo free radical photopolymerisation in response to blue light (wavelength 450-500 nm) and may offer superior handling and setting characteristics for novel hard tissue repair materials. The current investigation aims to determine the optimum formulation of bisphenol-A glycidyl methacrylate and triethyleneglycoldimethacrylate (bisGMA/TEGDMA) or urethane dimethacrylate (UDMA)/TEGDMA resin mixtures and the effect of Bioglass incorporation on the rate of polymerisation (RP), degree of conversion (DC) and flexural strength (FS) of light-curable filled resin composites (FRCs). Experimental photoactive resins containing a range of bisGMA, UDMA and TEGDMA ratios and/or filled with non-silanised irregular or spherical 45S5-Bioglass (50 μm; 5-40 wt%) and/or silanised silicate glass filler particulates (0.7 μm; 50-70 wt%) were tested. RP and DC were analysed in real-time using nearinfrared spectroscopy. FS of resins and FRCs were determined using three-point flexural strength tests. UDMA/TEGDMA resins exhibited increased DC compared with bisGMA/TEGDMA resins (p<0.05). The addition of spherical particles of Bioglass had a detrimental effect on the FS (p>0.05), whereas they increased DC of UDMA/TEGDMA resins (p<0.05). Addition of irregular shaped Bioglass particles increased the FS of UDMA/TEGDMA resins up to 20 wt% Bioglass (p<0.05). The flexibility and strength conferred by the urethane group in UDMA may result in enhanced physical and mechanical properties compared with conventional resins containing bulky (bisGMA) molecules. Addition of 45S5-Bioglass with specific filler content, size and morphology resulted in enhanced mechanical and physical properties of UDMA/TEGDMA composites. © (2014) Trans Tech Publications, Switzerland.
Resumo:
Biomaterials have been used for more than a century in the human body to improve body functions and replace damaged tissues. Currently approved and commonly used metallic biomaterials such as, stainless steel, titanium, cobalt chromium and other alloys have been found to have adverse effects leading in some cases, to mechanical failure and rejection of the implant. The physical or chemical nature of the degradation products of some implants initiates an adverse foreign body reaction in the tissue. Some metallic implants remain as permanent fixtures, whereas others such as plates, screws and pins used to secure serious fractures are removed by a second surgical procedure after the tissue has healed sufficiently. However, repeat surgical procedures increase the cost of health care and the possibility of patient morbidity. This study focuses on the development of magnesium based biodegradable alloys/metal matrix composites (MMCs) for orthopedic and cardiovascular applications. The Mg alloys/MMCs possessed good mechanical properties and biocompatible properties. Nine different compositions of Mg alloys/MMCs were manufactured and surface treated. Their degradation behavior, ion leaching, wettability, morphology, cytotoxicity and mechanical properties were determined. Alloying with Zn, Ca, HA and Gd and surface treatment resulted in improved mechanical properties, corrosion resistance, reduced cytotoxicity, lower pH and hydrogen evolution. Anodization resulted in the formation of a distinct oxide layer (thickness 5-10 μm) as compared with that produced on mechanically polished samples (~20-50 nm) under ambient conditions. It is envisaged that the findings of this research will introduce a new class of Mg based biodegradable alloys/MMCs and the emergence of innovative cardiovascular and orthopedic implant devices.^