922 resultados para Biomedical informatics
Resumo:
Recent commentaries have proposed the advantages of using open exchange of data and informatics resources for improving health-related policies and patient care in Africa. Yet, in many African regions, both private medical and public health information systems are still unaffordable. Open exchange over the social Web 2.0 could encourage more altruistic support of medical initiatives. We have carried out some experiments to demonstrate the feasibility of using this approach to disseminate open data and informatics resources in Africa. After the experiments we developed the AFRICA BUILD Portal, the first Social Network for African biomedical researchers. Through the AFRICA BUILD Portal users can access in a transparent way to several resources. Currently, over 600 researchers are using distributed and open resources through this platform committed to low connections.
Resumo:
Secure access to patient data is becoming of increasing importance, as medical informatics grows in significance, to both assist with population health studies, and patient specific medicine in support of treatment. However, assembling the many different types of data emanating from the clinic is in itself a difficulty, and doing so across national borders compounds the problem. In this paper we present our solution: an easy to use distributed informatics platform embedding a state of the art data warehouse incorporating a secure pseudonymisation system protecting access to personal healthcare data. Using this system, a whole range of patient derived data, from genomics to imaging to clinical records, can be assembled and linked, and then connected with analytics tools that help us to understand the data. Research performed in this environment will have immediate clinical impact for personalised patient healthcare.
Resumo:
Para las decisiones urgentes sobre intervenciones quirúrgicas en el sistema cardiovascular se necesitan simulaciones computacionales con resultados fiables y que consuman un tiempo de cálculo razonable. Durante años los investigadores han trabajado en diversos métodos numéricos de cálculo que resulten atractivos para los cirujanos. Estos métodos, precisos pero costosos desde el punto de vista del coste computacional, crean un desajuste entre la oferta de los ingenieros que realizan las simulaciones y los médicos que operan en el quirófano. Por otra parte, los métodos de cálculo más simplificados reducen el tiempo de cálculo pero pueden proporcionar resultados no realistas. El objetivo de esta tesis es combinar los conceptos de autorregulación e impedancia del sistema circulatorio, la interacción flujo sanguíneo-pared arterial y modelos geométricos idealizados tridimensionales de las arterias pero sin pérdida de realismo, con objeto de proponer una metodología de simulación que proporcione resultados correctos y completos, con tiempos de cálculo moderados. En las simulaciones numéricas, las condiciones de contorno basadas en historias de presión presentan inconvenientes por ser difícil conocerlas con detalle, y porque los resultados son muy sensibles ante pequeñas variaciones de dichas historias. La metodología propuesta se basa en los conceptos de autorregulación, para imponer la demanda de flujo aguas abajo del modelo en el ciclo cardiaco, y la impedancia, para representar el efecto que ejerce el flujo en el resto del sistema circulatorio sobre las arterias modeladas. De este modo las historias de presión en el contorno son resultados del cálculo, que se obtienen de manera iterativa. El método propuesto se aplica en una geometría idealizada del arco aórtico sin patologías y en otra geometría correspondiente a una disección Stanford de tipo A, considerando la interacción del flujo pulsátil con las paredes arteriales. El efecto de los tejidos circundantes también se incorpora en los modelos. También se hacen aplicaciones considerando la interacción en una geometría especifica de un paciente anciano que proviene de una tomografía computarizada. Finalmente se analiza una disección Stanford tipo B con tres modelos que incluyen la fenestración del saco. Clinicians demand fast and reliable numerical results of cardiovascular biomechanic simulations for their urgent pre-surgery decissions. Researchers during many years have work on different numerical methods in order to attract the clinicians' confidence to their colorful contours. Though precise but expensive and time-consuming methodologies create a gap between numerical biomechanics and hospital personnel. On the other hand, simulation simplifications with the aim of reduction in computational time may cause in production of unrealistic outcomes. The main objective of the current investigation is to combine ideas such as autoregulation, impedance, fluid-solid interaction and idealized geometries in order to propose a computationally cheap methodology without excessive or unrealistic simplifications. The pressure boundary conditions are critical and polemic in numerical simulations of cardiovascular system, in which a specific arterial site is of interest and the rest of the netwrok is neglected but represented by a boundary condition. The proposed methodology is a pressure boundary condition which takes advantage of numerical simplicity of application of an imposed pressure boundary condition on outlets, while it includes more sophisticated concepts such as autoregulation and impedance to gain more realistic results. Incorporation of autoregulation and impedance converts the pressure boundary conditions to an active and dynamic boundary conditions, receiving feedback from the results during the numerical calculations and comparing them with the physiological requirements. On the other hand, the impedance boundary condition defines the shapes of the pressure history curves applied at outlets. The applications of the proposed method are seen on idealized geometry of the healthy arotic arch as well as idealized Stanford type A dissection, considering the interaction of the arterial walls with the pulsatile blood flow. The effect of surrounding tissues is incorporated and studied in the models. The simulations continue with FSI analysis of a patient-specific CT scanned geometry of an old individual. Finally, inspiring of the statistic results of mortality rates in Stanford type B dissection, three models of fenestrated dissection sac is studied and discussed. Applying the developed boundary condition, an alternative hypothesis is proposed by the author with respect to the decrease in mortality rates in patients with fenestrations.
Resumo:
Objectives: To examine the types of questions received by Clinical Informatics Consult Service (CICS) librarians from clinicians on rounds and to analyze the number of clearly differentiated viewpoints provided in response.
Resumo:
This study aims to analyze how middle-level health systems’ managers understand the integration of a health care response to intimate partner violence (IPV) within the Spanish health system. Data were obtained through 26 individual interviews with professionals in charge of coordinating the health care response to IPV within the 17 regional health systems in Spain. The transcripts were analyzed following grounded theory in accordance with the constructivist approach described by Charmaz. Three categories emerged, showing the efforts and challenges to integrate a health care response to IPV within the Spanish health system: “IPV is a complex issue that generates activism and/or resistance,” “The mandate to integrate a health sector response to IPV: a priority not always prioritized,” and “The Spanish health system: respectful with professionals’ autonomy and firmly biomedical.” The core category, “Developing diverse responses to IPV integration,” crosscut the three categories and encompassed the range of different responses that emerge when a strong mandate to integrate a health care response to IPV is enacted. Such responses ranged from refraining to deal with the issue to offering a women-centered response. Attempting to integrate a response to nonbiomedical health problems as IPV into health systems that remain strongly biomedicalized is challenging and strongly dependent both on the motivation of professionals and on organizational factors. Implementing and sustaining changes in the structure and culture of the health care system are needed if a health care response to IPV that fulfills the World Health Organization guidelines is to be ensured.