963 resultados para Biological monitoring
Resumo:
Bibliography: p. 37.
Resumo:
"IEPA/WPC/89-163."--Cover.
Resumo:
For the managers of a region as large as the Great Barrier Reef, it is a challenge to develop a cost effective monitoring program, with appropriate temporal and spatial resolution to detect changes in water quality. The current study compares water quality data (phytoplankton abundance and water clarity) from remote sensing with field sampling (continuous underway profiles of water quality and fixed site sampling) at different spatial scales in the Great Barrier Reef north of Mackay (20 degrees S). Five transects (20-30 km long) were conducted from clean oceanic water to the turbid waters adjacent to the mainland. The different data sources demonstrated high correlations when compared on a similar spatial scale (18 fixed sites). However, each data source also contributed unique information that could not be obtained by the other techniques. A combination of remote sensing, underway sampling and fixed stations will deliver the best spatial and temporal monitoring of water quality in the Great Barrier Reef. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In inflammatory diseases, release of oxidants leads to oxidative damage to proteins. The precise nature of oxidative damage to individual proteins depends on the oxidant involved. Chlorination and nitration are markers of modification by the myeloperoxidase-H2O2-Cl- system and nitric oxide-derived oxidants, respectively. Although these modifications can be detected by western blotting, currently no reliable method exists to identify the specific sites damage to individual proteins in complex mixtures such as clinical samples. We are developing novel LCMS2 and precursor ion scanning methods to address this. LC-MS2 allows separation of peptides and detection of mass changes in oxidized residues on fragmentation of the peptides. We have identified indicative fragment ions for chlorotyrosine, nitrotyrosine, hydroxytyrosine and hydroxytryptophan. A nano-LC/MS3 method involving the dissociation of immonium ions to give specific fragments for the oxidized residues has been developed to overcome the problem of false positives from ions isobaric to these immonium ions that exist in unmodified peptides. The approach has proved able to identify precise protein modifications in individual proteins and mixtures of proteins. An alternative methodology involves multiple reaction monitoring for precursors and fragment ions are specific to oxidized and chlorinated proteins, and this has been tested with human serum albumin. Our ultimate aim is to apply this methodology to the detection of oxidative post-translational modifications in clinical samples for disease diagnosis, monitoring the outcomes of therapy, and improved understanding of disease biochemistry.
Resumo:
The persistence of Salmonella spp. in low moisture foods is a challenge for the food industry as despite control strategies already in place, notable outbreaks still occur. The aim of this study was to characterise isolates of Salmonella, known to be persistent in the food manufacturing environment, by comparing their microbiological characteristics with a panel of matched clinical and veterinary isolates. The gross morphology of the challenge panel was phenotypically characterised in terms of cellular size, shape and motility. In all the parameters measured, the factory isolates were indistinguishable from the human, clinical and veterinary strains. Further detailed metabolic profiling was undertaken using the biolog Microbial ID system. Multivariate analysis of the metabolic microarray revealed differences in metabolism of the factory isolate of S.Montevideo, based on its upregulated ability to utilise glucose and the sugar alcohol groups. The remainder of the serotype-matched isolates were metabolically indistinguishable. Temperature and humidity are known to influence bacterial survival and through environmental monitoring experimental parameters were defined. The results revealed Salmonella survival on stainless steel was affected by environmental temperatures that may be experienced in a food processing environment; with higher survival rates (D25=35.4) at temperatures at 25°C and lower humidity levels of 15% RH, however a rapid decline in cell count (D10=3.4) with lower temperatures of 10°C and higher humidity of 70% RH. Several resident factories strains survived in higher numbers on stainless steel (D25=29.69) compared to serotype matched clinical and veterinary isolates (D25=22.98). Factory isolates of Salmonella did not show an enhanced growth rate in comparison to serotype matched solates grown in Luria broth, Nutrient broth and M9 minimal media indicating that as an independent factor, growth was unlikely to be a major factor driving Salmonella persistence. Using a live / dead stain coupled with fluorescence microscopy revealed that when no longer culturable, isolates of S.Schwarzengrund entered into a viable nonculturable state. The biofilm forming capacity of the panel was characterised and revealed that all were able to form biofilms. None of the factory isolates showed an enhanced capability to form biofilms in comparison to serotype-matched isolates. In disinfection studies, planktonic cells were more susceptible to disinfectants than cells in biofilm and all the disinfectants tested were successful in reducing bacterial load. Contact time was one of the most important factors for reducing bacterial populations in a biofilm. The genomes of eight strains were sequenced. At the nucleotide and amino acid level the food factory isolates were similar to those of isolates from other environments; no major genomic rearrangements were observed, supporting the conclusions of the phenotypic and metabolic analysis. In conclusion, having investigated a variety of morphological, biochemical and genomic factors, it is unlikely that the persistence of Salmonella in the food manufacturing environment is attributable to a single phenotypic, metabolic or genomic factor. Whilst a combination of microbiological factors may be involved it is also possible that strain persistence in the factory environment is a consequence of failure to apply established hygiene management principles.
Resumo:
Routine monitoring of environmental pollution demands simplicity and speed without sacrificing sensitivity or accuracy. The development and application of sensitive, fast and easy to implement analytical methodologies for detecting emerging and traditional water and airborne contaminants in South Florida is presented. A novel method was developed for quantification of the herbicide glyphosate based on lyophilization followed by derivatization and simultaneous detection by fluorescence and mass spectrometry. Samples were analyzed from water canals that will hydrate estuarine wetlands of Biscayne National Park, detecting inputs of glyphosate from both aquatic usage and agricultural runoff from farms. A second study describes a set of fast, automated LC-MS/MS protocols for the analysis of dioctyl sulfosuccinate (DOSS) and 2-butoxyethanol, two components of Corexit®. Around 1.8 million gallons of those dispersant formulations were used in the response efforts for the Gulf of Mexico oil spill in 2010. The methods presented here allow the trace-level detection of these compounds in seawater, crude oil and commercial dispersants formulations. In addition, two methodologies were developed for the analysis of well-known pollutants, namely Polycyclic Aromatic Hydrocarbons (PAHs) and airborne particulate matter (APM). PAHs are ubiquitous environmental contaminants and some are potent carcinogens. Traditional GC-MS analysis is labor-intensive and consumes large amounts of toxic solvents. My study provides an alternative automated SPE-LC-APPI-MS/MS analysis with minimal sample preparation and a lower solvent consumption. The system can inject, extract, clean, separate and detect 28 PAHs and 15 families of alkylated PAHs in 28 minutes. The methodology was tested with environmental samples from Miami. Airborne Particulate Matter is a mixture of particles of chemical and biological origin. Assessment of its elemental composition is critical for the protection of sensitive ecosystems and public health. The APM collected from Port Everglades between 2005 and 2010 was analyzed by ICP-MS after acid digestion of filters. The most abundant elements were Fe and Al, followed by Cu, V and Zn. Enrichment factors show that hazardous elements (Cd, Pb, As, Co, Ni and Cr) are introduced by anthropogenic activities. Data suggest that the major sources of APM were an electricity plant, road dust, industrial emissions and marine vessels.
Resumo:
Tree islands, a prominent feature in both the marl prairie and ridge and slough landscapes of the Everglades, are sensitive to large-scale restoration actions associated with the Comprehensive Everglades Restoration Plan (CERP) authorized by the Water Resources Development Act (WRDA) 2000 to restore the south Florida ecosystem. More specifically, changes in hydrologic regimes at both local and landscape scales are likely to affect the internal water economy of islands, which in turn will influence plant community structure and function. To strengthen our ability to assess the “performance” of tree island ecosystems and predict how these hydrologic alterations would translate into ecosystem response, an improved understating of reference conditions of vegetation structure and function, and their responses to major stressors is important. In this regard, a study of vegetation structure and composition in relation to associated physical and biological processes was initiated in 2005 with initial funding from Everglades National Park and South Florida Water Management District (SFWMD). The study continued through 2011 with funding from US Army Corps of Engineers (USACOE) (Cooperative Agreement # W912HZ-09-2-0019 Modification No.: P00001).
Resumo:
Acknowledgements This work was funded by the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs, grant G1100675). The authors are grateful to the aquarium staff at the University of Aberdeen (Karen Massie) and Dr David Smail at Marine Scotland for valuable discussion during the establishment of the experimental design.
Resumo:
[EN] The Republic of Cape Verde is situated about 500 km off the coast of Senegal, West Africa. The islands of Sal, Boa Vista and Maio constitute the Eastern group and harbour the most important nesting beaches for loggerhead turtles in the Archipelago. During 1998-2004 nesting seasons, fieldwork has been focused on the eastern beaches of Boa Vista and, occasionally, in other beaches of Boa Vista and in the islands of Maio, Sal and Santa Luzia. The main study area includes a total extension of 3.1 km of suitable nesting beaches. All through these years, a tagging program has been carried out, alongside recording of biological data and monitoring of nests.