994 resultados para Biochemical characterization
Resumo:
Cork processing involves a boiling step to make the cork softer, which consumes a high volume of water and generates a wastewater with a high organic content, rich in tannins. An assessment of the final wastewater characteristics and of the boiling water composition along the boiling process was performed. The parameters studied were pH, color, total organic carbon (TOC), chemical and biochemical oxygen demands (COD, BOD5, BOD20), total suspended solids (TSS), total phenols and tannins (TP, TT). It was observed that the water solutes extraction power is significantly reduced for higher quantities of cork processed. Valid relationships between parameters were established not only envisaging wastewater characterization but also to provide an important tool for wastewater monitoring and for process control/optimization. Boiling water biodegradability presented decreasing values with the increase of cork processed and for the final wastewater its value is always lower than 0.5, indicating that these wastewaters are very difficult to treat by biological processes. The biodegradability was associated with the increase of tannin content that can rise up to 0.7 g/L. These compounds can be used by other industries when concentrated and the clarified wastewater can be reused, which is a potential asset in this wastewater treatment.
Resumo:
Eur. J. Biochem. 270, 3904–3915 (2003)
Resumo:
A novel two-component enzyme system from Escherichia coli involving a flavorubredoxin (FlRd) and its reductase was studied in terms of spectroscopic, redox, and biochemical properties of its constituents. FlRd contains one FMN and one rubredoxin (Rd) center per monomer. To assess the role of the Rd domain, FlRd and a truncated form lacking the Rd domain (FlRd¢Rd), were characterized. FlRd contains 2.9 ( 0.5 iron atoms/subunit, whereas FlRd¢Rd contains 2.1 ( 0.6 iron atoms/subunit. While for FlRd one iron atom corresponds to the Rd center, the other two irons, also present in FlRd¢Rd, are most probably due to a di-iron site. Redox titrations of FlRd using EPR and visible spectroscopies allowed us to determine that the Rd site has a reduction potential of -140 ( 15 mV, whereas the FMN undergoes reduction via a red-semiquinone, at -140 ( 15 mV (Flox/Flsq) and -180 ( 15 mV (Flsq/Flred), at pH 7.6. The Rd site has the lowest potential ever reported for a Rd center, which may be correlated with specific amino acid substitutions close to both cysteine clusters. The gene adjacent to that encoding FlRd was found to code for an FAD-containing protein, (flavo)rubredoxin reductase (FlRd-reductase), which is capable of mediating electron transfer from NADH to DesulfoVibrio gigas Rd as well as to E. coli FlRd. Furthermore, electron donation was found to proceed through the Rd domain of FlRd as the Rd-truncated protein does not react with FlRd-reductase. In vitro, this pathway links NADH oxidation with dioxygen reduction. The possible function of this chain is discussed considering the presence of FlRd homologues in all known genomes of anaerobes and facultative aerobes.
Resumo:
Journal of Bacteriology (Junho 2008) 4272-4280
Resumo:
Yeast forms of five strains of Paracoccidioides brasiliensis (SN, 2, 18, 192 and JT- 1) were cultured in a synthetic medium for obtaining methylic antigens. These antigens were lyophilized and studied for each strain, to determine their partial biochemical composition, through measurements of total lipid, protein and carbohydrate contents. Lipids of methylic antigens were purified and analysed for sterols, phospholipids, glycolipids, li-poproteins, and partial characterization of sterols. Significant differences were found among antigenic preparations derived from distinct P. brasiliensis strains, in relation to the quantitative determinations. On the other hand, sterol analysis revealed the presence of ergosterol, lanosterol and squalene in all samples. The diversity verified in the biochemical characteristics of antigens derived from different P. brasiliensis strains, confirm the need of using a pool of fungal samples in order to produce antigen preparations for serological procedures without hampering their sensitivity.
Resumo:
The behavior of T. cruzi strains from S. Felipe - BA (19 SF, 21 SF and 22 SF) classified as Type II Zymodeme 2, was investigated after passage through the authoctonous (P. megistus) and foreign vectors (T. infestans and R. prolixus). For each strain Swiss mice were infected: I - with blood forms (control); II - with metacyclic forms (MF) from P. megistus; III - with MF from T. infestans; IV - with MF from R. prolixus. Inocula: MF from the three species of triatomine, 60 to 120 days after feeding in infected mice, adjusted to 10 4. Biological behavior in mice (parasitemia, morphology, mortality, virulence and pathogenicity) after passage through triatomine was compared with data from the same strain in control mice. Isoenzymic electrophoresis (ASAT, ALAT, PGM, GPI) were also performed after culture into Warren medium. The three strains maintained the isoenzyme profiles (zymodeme 2), in the control groups and after passages through different species of triatomine. Biological characterization disclosed Type II strains patterns for all groups. An increased virulence was observed with the 22 SF strain isolated from P. megistus and T. infestans and higher levels of parasitemia and predominance of slender forms in mice inoculated with the 19 SF and 21 SF from these same species. Results indicate that the passage through the two species T. infestans and P. megistus had a positive influence on the virulence of the regional strains of S. Felipe, regardless of being autocthonous (P. megistus) or foreign to the area (T. infestans).
Resumo:
Dissertation submitted to obtain the phD degree in Biochemistry, specialty in Physical- Biochemistry, by the Faculdade de Ciências e Tecnologia from the Universidade Nova de Lisboa
Resumo:
Cryptococcus neoformans is the major cause of fungal meningitis, a potentially lethal mycosis. Bird excreta can be considered a significant environmental reservoir of this species in urban areas, thirty-three samples of pigeon excreta were collected within the city of Vitoria, Brazil. Cryptococcus neoformans was isolated and identified using standard biochemical assays in ten samples. PCR amplification with primer M13 and orotidine monophosphate pyrophosphorylase (URA5) gene-restriction fragment length polymorphism (RFLP) analysis discerned serotypes and genotypes within this species. All isolates were serotype A (C. neoformans var. grubii) and genotype VNI. The two alternative alleles a and α at the mating type locus were determined by PCR amplification and mating assays performed on V8 medium. All isolates were MAT α mating type but only 50% were able to mate in vitro with the opposite mating type MAT a tester strains (JEC20, KN99a and Bt63). This study adds information on the ecology and molecular characterization of C. neoformans in the Southeast region of Brazil.
Resumo:
Eur. J. Biochem. 270, 3904–3915 (2003) doi:10.1046/j.1432-1033.2003.03772.x
Resumo:
Tese de Doutoramento em Biologia de Plantas
Resumo:
Dissertação de mestrado em Bioengenharia
Resumo:
Characterization of the insecticidal and hemolytic activity of solubilized crystal proteins of Bacillus thuringiensis (Bt) subsp. medellin (Btmed) was performed and compared to solubilized crystal proteins of isolates 1884 of B. thuringiensis subsp. israelensis (Bti) and isolate PG-14 of B. thuringiensis subsp. morrisoni (Btm). In general, at acid pH values solubilization of the Bt crystalline parasporal inclusions (CPI) was lower than at alkaline pH. The larvicidal activity demonstrated by the CPI of Btmed indicated that optimal solubilization of CPI takes place at a pH value of 11.3, in Bti at pH values from 5.03 to 11.3 and in Btm at pH values from 9.05 to 11.3. Hemolytic activity against sheep red blood cells was mainly found following extraction at pH 11.3 in all Bt strains tested. Polyacrylamide gel electrophoresis under denaturing conditions revealed that optimal solubilization of the CPI in all Bt strains takes place at the alkaline pH values from 9.05 to 11.3. An enriched preparation of Btmed crystals was obtained, solubilized and crystal proteins were separated on a size exclusion column (Sephacryl S-200). Three main protein peaks were observed on the chromatogram. The first peak had two main proteins that migrate between 90 to 100 kDa. These proteins are apparently not common to other Bt strains isolated to date. The second and third peaks obtained from the size exclusion column yielded polypeptides of 68 and 28-30 kDa, respectively. Each peak independently, showed toxicity against 1st instar Culex quinquefasciatus larvae. Interestingly, combinations of the fractions corresponding to the 68 and 30 kDa protein showed an increased toxicity. These results suggest that the 94 kDa protein is an important component of the Btmed toxins with the highest potency to kill mosquito larvae. When crystal proteins of Bti were probed with antisera raised independently against the three main protein fractions of Btmed, the only crystal protein that showed cross reaction was the 28 kDa protein. These data suggest that Btmed could be an alternative bacterium for mosquito control programs in case mosquito larval resistance emerges to Bti toxic proteins.
Resumo:
The moulting cycles of all larval instars (zoea I, zoea II, and megalopa) of the spider crab Maja brachydactyla Balss 1922 were studied in laboratory rearing experiments. Morphological changes in the epidermis and cuticle were photographically documented in daily intervals and assigned to successive stages of the moulting cycle (based on Drach's classification system). Our moult-stage characterizations are based on microscopical examination of integumental modifications mainly in the telson, using epidermal condensation, the degree of epidermal retraction (apolysis), and morphogenesis (mainly setagenesis) as criteria. In the zoea II and megalopa, the formation of new setae was also observed in larval appendages including the antenna, maxillule, maxilla, second maxilliped, pleopods, and uropods. As principal stages within the zoea I moulting cycle, we describe postmoult (Drach's stages A–B combined), intermoult (C), and premoult (D), the latter with three substages (D0, D1, and D2). In the zoea II and megalopa, D0 and D1 had to be combined, because morphogenesis (the main characteristic of D1) was unclear in the telson and did not occur synchronically in different appendices. The knowledge of the course and time scale of successive moult-cycle events can be used as a tool for the evaluation of the developmental state within individual larval instars, providing a morphological reference system for physiological and biochemical studies related to crab aquaculture.
Resumo:
The major macromolecules on the surface of the parasitic protozoan Leishmania major appear to be down-regulated during transformation of the parasite from an insect-dwelling promastigote stage to an intracellular amastigote stage that invades mammalian macrophages. In contrast, the major parasite glycolipids, the glycoinositol phospholipids (GIPLs), are shown here to be expressed at near-constant levels in both developmental stages. The structures of the GIPLs from tissue-derived amastigotes have been determined by h.p.l.c. analysis of the deaminated and reduced glycan head groups, and by chemical and enzymic sequencing. The deduced structures appear to form a complete biosynthetic series, ranging from Man alpha 1-4GlcN-phosphatidylinositol (PI) to Gal alpha 1-3Galf beta 1-3Man alpha 1-3Man alpha 1-4GlcN-PI (GIPL-2). A small proportion of GIPL-2 was further extended by addition of a Gal residue in either alpha 1-6 or beta 1-3 linkage. From g.c.-m.s. analysis and mild base treatment, all the GIPLs were shown to contain either alkylacylglycerol or lyso-alkylglycerol lipid moieties, where the alkyl chains were predominantly C18:0, with lower levels of C20:0, C22:0 and C24:0. L. major amastigotes also contained at least two PI-specific phospholipase C-resistant glycolipids which are absent from promastigotes. These neutral glycolipids were resistant to both mild acid and mild base hydrolysis, contained terminal beta-Gal residues and were not lost during extensive purification of amastigotes from host cell membranes. It is likely that these glycolipids are glycosphingolipids acquired from the mammalian host. The GIPL profile of L. major amastigotes is compared with the profiles found in L. major promastigotes and L. donovani amastigotes.
Resumo:
In vascular plants, the best-known feature of a differentiated endodermal cell is the "Casparian Strip" (CS). This structure refers to a highly localized cell wall impregnation in the transversal and anticlinal walls of the cell, which surrounds the cell like a belt/ring and is tightly coordinated with respect to neighboring cells. Analogous to tight junctions in animal epithelia, CS in plants act as a diffusion barrier that controls the movement of water and ions from soil into the stele. Since its first description by Robert Caspary in 1865 there have been many attempts to identify the chemical nature of the cell wall deposition in CS. Suberin, lignin, or both have been claimed to be the important components of CS in a series of different species. However, the exact chemical composition of CS has remained enigmatic. This controversy was due to the confusion and lack of knowledge regarding the precise measurement of three developmental stages of the endodermis. The CS represent only the primary stage of endodermal differentiation, which is followed by the deposition of suberin lamellae all around the cellular surface of endodermal cells (secondary developmental stage). Therefore, chemical analysis of whole roots, or even of isolated endodermal tissues, will always find both of the polymers present. It was crucial to clarify this point because this will guide our efforts to understand which cell wall biosynthetic component becomes localized in order to form the CS. The main aim of my work was to find out the major components of (early) CS, as well as their spatial and temporal development, physiological roles and relationship to barrier formation. Employing the knowledge and tools that have been accumulated over the last few years in the model plant Arabidopsis thaliana, various histological and chemical assays were used in this study. A particular feature of my work was to completely degrade, or inhibit formation of lignin and suberin biopolymers by biochemical, classical genetic and molecular approaches and to investigate its effect on CS formation and the establishment of a functional diffusion barrier. Strikingly, interference with monolignol biosynthesis abrogates CS formation and delays the formation of function diffusion barrier. In contrast, transgenic plants devoid of any detectable suberin still develop a functional CS. The combination of all these assays clearly demonstrates that the early CS polymer is made from monolignol (lignin monomers) and is composed of lignin. By contrast, suberin is formed much later as a secondary wall during development of endodermis. These early CS are functionally sufficient to block extracellular diffusion and suberin does not play important role in the establishment of early endodermal diffusion barrier. Moreover, suberin biosynthetic machinery is not present at the time of CS formation. Our study finally concludes the long-standing debate about the chemical nature of CS and opens the door to a new approach in lignin research, specifically for the identification of the components of the CS biosynthetic pathway that mediates the localized deposition of cell walls. I also made some efforts to understand the patterning and differentiation of endodermal passage cells in young roots. In the literature, passage cells are defined as a non- suberized xylem pole associated endodermal cells. Since these cells only contain the CS but not the suberin lamellae, it has been assumed that these cells may offer a continued low-resistance pathway for water and minerals into the stele. Thus far, no genes have been found to be expressed specifically in passage cells. In order to understand the patterning, differentiation, and physiological role of passage it would be crucial to identify some genes that are exclusively expressed in these cells. In order to identify such genes, I first generated fluorescent marker lines of stele-expressed transporters that have been reported to be expressed in the passage cells. My aim was to first highlight the passage cells in a non-specific way. In order to find passage cell specific genes I then adapted a two-component system based on previously published methods for gene expression profiling of individual cell types. This approach will allow us to target only the passage cells and then to study gene expression specifically in this cell type. Taken together, this preparatory work will provide an entry point to understand the formation and role of endodermal passage cells. - Chez les plantes vasculaires, la caractéristique la plus commune des cellules différentiées de l'endoderme est la présence de cadres de Caspary. Cette structure correspond à une imprégnation localisée des parties transversales et anticlinales de la paroi cellulaire. Cela donne naissance, autour de la cellule, à un anneau/cadre qui est coordonné par rapport aux cellules voisines. De manière analogue aux jonctions serrées des épithéliums chez les animaux, les cadres de Caspary agissent chez les plantes comme barrière de diffusion, contrôlant le mouvement de l'eau et des ions à travers la racine entre le sol et la stèle. Depuis leur première description par Robert Caspary en 1865, beaucoup de tentatives ont eu pour but de définir la nature chimique de ces cadres de Caspary. Après l'étude de différentes espèces végétales, à la fois la subérine, la lignine ou les deux ont été revendiquées comme étant des composants importants de ces cadres. Malgré tout, leur nature chimique exacte est restée longtemps énigmatique. Cette controverse provient de la confusion et du manque de connaissance concernant la détermination précise des trois stades de développement de l'endoderme. Les cadres de Caspary représentent uniquement le stade primaire de différentiation de l'endoderme. Celui-ci est suivi par le second stade de différentiation, la déposition de lamelles de subérine tout autour de la cellule endodermal. De ce fait, l'analyse chimique de racines entières ou de cellules d'endoderme isolées ne permet pas de séparer les stades de différentiation primaire et secondaire et aboutit donc à la présence des deux polymères. Il est également crucial de clarifier ce point dans le but de connaître quelle machinerie cellulaire localisée à la paroi cellulaire permet l'élaboration des cadres de Caspary. En utilisant les connaissances et les outils accumulés récemment grâce à la plante modèle Arabidopsis thaliana, divers techniques histologiques et chimiques ont été utilisées dans cette étude. Un point particulier de mon travail a été de dégrader ou d'inhiber complètement la formation de lignine ou de subérine en utilisant des approches de génétique classique ou moléculaire. Le but étant d'observer l'effet de l'absence d'un de ces deux polymères sur la formation des cadres de Caspary et l'établissement d'une barrière de diffusion fonctionnelle. De manière frappante, le fait d'interférer avec la voie de biosynthèse de monolignol (monomères de lignine) abolit la formation des cadres de Caspary et retarde l'élaboration d'une barrière de diffusion fonctionnelle. Par contre, des plantes transgéniques dépourvues d'une quantité détectable de subérine sont quant à elles toujours capables de développer des cadres de Caspary fonctionnels. Mises en commun, ces expériences démontrent que le polymère formant les cadres de Caspary dans la partie jeune de la racine est fait de monolignol, et que de ce fait il s'agit de lignine. La subérine, quant à elle, est formée bien plus tard durant le développement de l'endoderme, de plus il s'agit d'une modification de la paroi secondaire. Ces cadres de Caspary précoces faits de lignine suffisent donc à bloquer la diffusion extracellulaire, contrairement à la subérine. De plus, la machinerie de biosynthèse de la subérine n'est pas encore présente au moment de la formation des cadres de Caspary. Notre étude permet donc de mettre un terme au long débat concernant la nature chimique des cadres de Caspary. De plus, elle ouvre la porte à de nouvelles approches dans la recherche sur la lignine, plus particulièrement pour identifier des composants permettant la déposition localisée de ce polymère dans la paroi cellulaire. J'ai aussi fais des efforts pour mettre en évidence la formation ainsi que le rôle des cellules de passage dans les jeunes racines. Dans la littérature, les cellules de passage sont définies comme de la cellule endodermal faisant face aux pôles xylèmes et dont la paroi n'est pas subérisée. Du fait que ces cellules contiennent uniquement des cadres de Caspary et pas de lamelle de subérine, il a été supposé qu'elles ne devraient offrir que peu de résistance au passage de l'eau et des nutriments entre le sol et la stèle. Le rôle de ces cellules de passage est toujours loin d'être clair, de plus aucun gène s'exprimant spécifiquement dans ces cellules n'a été découvert à ce jour. De manière à identifier de tels gènes, j'ai tout d'abord généré des marqueurs fluorescents pour des transporteurs exprimés dans la stèle mais dont l'expression avait également été signalée dans l'endoderme, uniquement dans les cellules de passage. J'ai ensuite développé un système à deux composants basé sur des méthodes déjà publiées, visant principalement à étudier le profil d'expression génique dans un type cellulaire donné. En recoupant les gènes exprimés spécifiquement dans l'endoderme à ceux exprimés dans la stèle et les cellules de passage, il nous sera possible d'identifier le transriptome spécifique de ces cellules. Pris dans leur ensemble, ces résultats devraient donner un bon point d'entrée dans la définition et la compréhension des cellules de passage.