932 resultados para Bio medical Applications


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic resonance (MR) imaging has been used to analyse and evaluate the vocal tract shape through different techniques and with promising results in several fields. Our purpose is to demonstrate the relevance of MR and image processing for the vocal tract study. The extraction of contours of the air cavities allowed the set - up of a number of 3D reconstruction image stacks by means of the combination of orthogonally oriented sets of slices for e ach articulatory gesture, as a new approach to solve the expected spatial under sampling of the imaging process. In result these models give improved information for the visualization of morphologic and anatomical aspects and are useful for partial measure ments of the vocal tract shape in different situations. Potential use can be found in Medical and therapeutic applications as well as in acoustic articulatory speech modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quinoxaline derivatives are an important class of heterocycle compounds, where N replaces some carbon atoms in the ring of naphthalene. Its molecular formula is C8H6N2, formed by the fusion of two aromatic rings, benzene and pyrazine. It is rare in natural state, but their synthesis is easy to perform. In this review the State of the Art will be presented, which includes a summary of the progress made over the past years in the knowledge of the structure and mechanism of the quinoxaline and quinoxaline derivatives, associated medical and biomedical value as well as industrial value. Modifying quinoxaline structure it is possible to obtain a wide variety of biomedical applications, namely antimicrobial activities and chronic and metabolic diseases treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quinoxaline derivatives are an important class of heterocycle compounds, where N replaces some carbon atoms in the ring of naphthalene. Its molecular formula is C8H6N2, formed by the fusion of two aromatic rings, benzene and pyrazine. It is rare in natural state, but their synthesis is easy to perform. In this review the State of the Art will be presented, which includes a summary of the progress made over the past years in the knowledge of the structure and mechanism of the quinoxaline and quinoxaline derivatives, associated medical and biomedical value as well as industrial value. Modifying quinoxaline structure it is possible to obtain a wide variety of biomedical applications, namely antimicrobial activities and chronic and metabolic diseases treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação para a Ciência e a Tecnologia (FCT-MCTES) under the grant SFRH/BD/69306/2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the prospective partial replacement of fossil fuels by biodiesel, its production has continuously grown in the last decade. The increase in global biodiesel production demands the development of sustainable applications of its main by-product, crude glycerol. In this thesis the feasibility of producing polyhydroxyalkanoates (PHA) by a mixed microbial community using crude glycerol as feedstock was investigated. Several incubation conditions were studied in order to maximize PHA production. The microbial population selected under aerobic dynamic feeding conditions had the ability to consume both major carbon fractions present in the crude, glycerol and methanol. Two biopolymers were stored, poly-3-hydroxybutyrate (PHB) and glucose biopolymer (GB), apparently using glycerol as the only carbon source for their production. The microbial enrichment obtained was able to accumulate up to 47% PHB of cell dry weight with a productivity of 0.24 g HA/L d. The overall PHA yield on total substrate consumed (0.32 g COD HB/g COD crude glycerol) was in the middle range of those reported in literature (0.08–0.58 g COD PHA/g COD real waste). The increase of temperature from 23ºC to 30ºC favored the culture fraction that accumulates glucose biopolymer with a maximum accumulation value of 25% of cell dry weight, which is an interesting value but not the main goal of this thesis. The fact that crude glycerol can be used to produce PHA without any pre-treatment step, makes the overall production process economically more competitive, reducing polymer final cost. This was the first study that demonstrates the valorization of the glycerol fraction present in the crude glycerol into PHA using an aerobic mixed microbial consortium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented in this thesis explores novel routes for the processing of bio-based polymers, developing a sustainable approach based on the use of alternative solvents such as supercritical carbon dioxide (scCO2), ionic liquids (ILs) and deep eutectic solvents (DES). The feasibility to produce polymeric foams via supercritical fluid (SCF) foaming, combined with these solvents was assessed, in order to replace conventional foaming techniques that use toxic and harmful solvents. A polymer processing methodology is presented, based on SCF foaming and using scCO2 as a foaming agent. The SCF foaming of different starch based polymeric blends was performed, namely starch/poly(lactic acid) (SPLA) and starch/poly(ε-caprolactone) (SPCL). The foaming process is based on the fact that CO2 molecules can dissolve in the polymer, changing their mechanical properties and after suitable depressurization, are able to create a foamed (porous) material. In these polymer blends, CO2 presents limited solubility and in order to enhance the foaming effect, two different imidazolium based ILs (IBILs) were combined with this process, by doping the blends with IL. The use of ILs proved useful and improved the foaming effect in these starch-based polymer blends. Infrared spectroscopy (FTIR-ATR) proved the existence of interactions between the polymer blend SPLA and ILs, which in turn diminish the forces that hold the polymeric structure. This is directly related with the ability of ILs to dissolve more CO2. This is also clear from the sorption experiments results, where the obtained apparent sorption coefficients in presence of IL are higher compared to the ones of the blend SPLA without IL. The doping of SPCL with ILs was also performed. The foaming of the blend was achieved and resulted in porous materials with conductivity values close to the ones of pure ILs. This can open doors to applications as self-supported conductive materials. A different type of solvents were also used in the previously presented processing method. If different applications of the bio-based polymers are envisaged, replacing ILs must be considered, especially due to the poor sustainability of some ILs and the fact that there is not a well-established toxicity profile. In this work natural DES – NADES – were the solvents of choice. They present some advantages relatively to ILs since they are easy to produce, cheaper, biodegradable and often biocompatible, mainly due to the fact that they are composed of primary metabolites such as sugars, carboxylic acids and amino-acids. NADES were prepared and their physicochemical properties were assessed, namely the thermal behavior, conductivity, density, viscosity and polarity. With this study, it became clear that these properties can vary with the composition of NADES, as well as with their initial water content. The use of NADES in the SCF foaming of SPCL, acting as foaming agent, was also performed and proved successful. The SPCL structure obtained after SCF foaming presented enhanced characteristics (such as porosity) when compared with the ones obtained using ILs as foaming enhancers. DES constituted by therapeutic compounds (THEDES) were also prepared. The combination of choline chloride-mandelic acid, and menthol-ibuprofen, resulted in THEDES with thermal behavior very distinct from the one of their components. The foaming of SPCL with THEDES was successful, and the impregnation of THEDES in SPCL matrices via SCF foaming was successful, and a controlled release system was obtained in the case of menthol-ibuprofen THEDES.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An increasing number of m-Health applications are being developed benefiting health service delivery. In this paper, a new methodology based on the principle of calm computing applied to diagnostic and therapeutic procedure reporting is proposed. A mobile application was designed for the physicians of one of the Portuguese major hospitals, which takes advantage of a multi-agent interoperability platform, the Agency for the Integration, Diffusion and Archive (AIDA). This application allows the visualization of inpatients and outpatients medical reports in a quicker and safer manner, in addition to offer a remote access to information. This project shows the advantages in the use of mobile software in a medical environment but the first step is always to build or use an interoperability platform, flexible, adaptable and pervasive. The platform offers a comprehensive set of services that restricts the development of mobile software almost exclusively to the mobile user interface design. The technology was tested and assessed in a real context by intensivists.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Biomédica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens), and could be used instead of the existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics) constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to discover novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacteriophages (phages), natural enemies of bacteria, can encode enzymes able to degrade polymeric substances. These substances can be found in the bacterial cell surface, such as polysaccharides, or are produced by bacteria when they are living in biofilm communities, the most common bacterial lifestyle. Consequently, phages with depolymerase activity have a facilitated access to the host receptors, by degrading the capsular polysaccharides, and are believed to have a better performance against bacterial biofilms, since the degradation of extracellular polymeric substances by depolymerases might facilitate the access of phages to the cells within different biofilm layers. Since the diversity of phage depolymerases is not yet fully explored, this is the first review gathering information about all the depolymerases encoded by fully sequenced phages. Overall, in this study, 160 putative depolymerases, including sialidases, levanases, xylosidases, dextranases, hyaluronidases, peptidases as well as pectate/pectin lyases, were found in 143 phages (43 Myoviridae, 47 Siphoviridae, 37 Podoviridae, and 16 unclassified) infecting 24 genera of bacteria. We further provide information about the main applications of phage depolymerases, which can comprise areas as diverse as medical, chemical, or food-processing industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine α-lactalbumin (α-La) and lysozyme (Lys), two globular proteins with highly homologous tertiary structures and opposite isoelectric points, were used to produce bio-based supramolecular structures under various pH values (3, 7 and 11), temperatures (25, 50 and 75 °C) and times (15, 25 and 35 min) of heating. Isothermal titration calorimetry experiments showed protein interactions and demonstrated that structures were obtained from the mixture of α-La/Lys in molar ratio of 0.546. Structures were characterized in terms of morphology by transmission electron microscopy (TEM) and dynamic light scattering (DLS), conformational structure by circular dichroism and intrinsic fluorescence spectroscopy and stability by DLS. Results have shown that protein conformational structure and intermolecular interactions are controlled by the physicochemical conditions applied. The increase of heating temperature led to a significant decrease in size and polydispersity (PDI) of α-La–Lys supramolecular structures, while the increase of heating time, particularly at temperatures above 50 °C, promoted a significant increase in size and PDI. At pH 7 supramolecular structures were obtained at microscale – confirmed by optical microscopy – displaying also a high PDI (i.e. > 0.4). The minimum size and PDI (61 ± 2.3 nm and 0.14 ± 0.03, respectively) were produced at pH 11 for a heating treatment of 75 °C for 15 min, thus suggesting that these conditions could be considered as critical for supramolecular structure formation. Its size and morphology were confirmed by TEM showing a well-defined spherical form. Structures at these conditions showed to be stable at least for 30 or 90 days, when stored at 25 or 4 °C, respectively. Hence, α-La–Lys supramolecular structures showed properties that indicate that they are a promising delivery system for food and pharmaceutical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase in heavy metal contamination in freshwater systems causes serious environmental problems in most industrialized countries, and the effort to find ecofriendly techniques for reducing water and sediment contamination is fundamental for environmental protection. Permeable barriers made of natural clays can be used as low-cost and eco-friendly materials for adsorbing heavy metals from water solution and thus reducing the sediment contamination. This study discusses the application of permeable barriers made of vermiculite clay for heavy metals remediation at the interface between water and sediments and investigates the possibility to increase their efficiency by loading the vermiculite surface with a microbial biofilm of Pseudomonas putida, which is well known to be a heavy metal accumulator. Some batch assays were performed to verify the uptake capacity of two systems and their adsorption kinetics, and the results indicated that the vermiculite bio-barrier system had a higher removal capacity than the vermiculite barrier (?34.4 and 22.8 % for Cu and Zn, respectively). Moreover, the presence of P. putida biofilm strongly contributed to fasten the kinetics of metals adsorption onto vermiculite sheets. In open-system conditions, the presence of a vermiculite barrier at the interface between water and sediment could reduce the sediment contamination up to 20 and 23 % for Cu and Zn, respectively, highlighting the efficiency of these eco-friendly materials for environmental applications. Nevertheless, the contribution of microbial biofilm in open-system setup should be optimized, and some important considerations about biofilm attachment in a continuous-flow system have been discussed.