563 resultados para Bicontinuous nanocomposites


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene and carbon nanotube nanocomposite (GCN) was synthesised and applied in gene transfection of pIRES plasmid conjugated with green fluorescent protein (GFP) in NIH-3T3 and NG97 cell lines. The tips of the multi-walled carbon nanotubes (MWCNTs) were exfoliated by oxygen plasma etching, which is also known to attach oxygen content groups on the MWCNT surfaces, changing their hydrophobicity. The nanocomposite was characterised by high resolution scanning electron microscopy; energy-dispersive X-ray, Fourier transform infrared and Raman spectroscopies, as well as zeta potential and particle size analyses using dynamic light scattering. BET adsorption isotherms showed the GCN to have an effective surface area of 38.5m(2)/g. The GCN and pIRES plasmid conjugated with the GFP gene, forming π-stacking when dispersed in water by magnetic stirring, resulting in a helical wrap. The measured zeta potential confirmed that the plasmid was connected to the nanocomposite. The NIH-3T3 and NG97 cell lines could phagocytize this wrap. The gene transfection was characterised by fluorescent protein produced in the cells and pictured by fluorescent microscopy. Before application, we studied GCN cell viability in NIH-3T3 and NG97 line cells using both MTT and Neutral Red uptake assays. Our results suggest that GCN has moderate stability behaviour as colloid solution and has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity and good transfection efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Luminescence properties of Eu(3+) doped germanate glasses containing either silver or gold nanoparticles (NPs) were investigated for excitation at 405 nm. Enhanced emissions and luminescence quenching of the Eu(3+) transitions in the range from 570 to 720 nm were observed for samples having various concentrations of metallic NPs. Electric-dipole and magnetic-dipole transitions that originate from the Eu(3+) level (5)D(0) exhibit large enhancement due to the presence of the metallic NPs. The results suggest that the magnetic response of rare-earth doped metal-dielectric composites at optical frequencies can be as strong as their electric response due to the confinement of the optical magnetic field. (C) 2010 American Institute of Physics. [doi:10.1063/1.3431347]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Layer-by-layer (LBL) assembly was used to combine crystalline rod-like nanoparticles obtained from a vegetable source, cellulose nanowhiskers (CNWs), with collagen, the main component of skin and connective tissue found exclusively in animals. The film growth of the multilayered collagen/CNW was monitored by UV-Vis spectroscopy and ellipsometry measurements, whereas the film morphology and surface roughness were characterized by SEM and AFM. UV-Vis spectra showed the deposition of the same amount of collagen, 5 mg m(-2), in each dipping cycle. Ellipsometry data showed an increment in thickness with the number of layers, and the average thickness of each bilayer was found to be 8.6 nm. The multilayered bio-based nanocomposites were formed by single layers of densely packed CNWs adsorbed on top of each thin collagen layer where the hydrogen bonding between collagen amide groups and OH groups of the CNWs plays a mandatory role in the build-up of the thin films. The approach used in this work represents a potential strategy to mimic the characteristics of natural extracellular matrix (ECM) which can be used for applications in the biomedical field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High solids content film-forming poly[styrene-co-(n-butyl acrylate)] [poly(Sty-co-BuA)] latexes armored with Laponite clay platelets have been synthesized by soap-free emulsion copolymerization of styrene and n-butyl acrylate. The polymerizations were performed in batch in the presence of Laponite and a methyl ether acrylateterminated poly(ethylene glycol) macromonomer in order to promote polymer/clay association. The overall polymerization kinetics showed a pronounced effect of clay on nucleation and stabilization of the latex particles. Cryo-transmission electron microscopy observation confirmed the armored morphology and indicated that the majority of Laponite platelets were located at the particle surface. The resulting nanostructured films displayed enhanced mechanical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the main factors affecting the rheological behavior of polyethylene terephtalate (PET) in the linear viscoelastic regime (water content, time delay before test, duration of experiment, and temperature) were accessed. Small amplitude oscillatory shear tests were performed after different time delays ranging from 300 to 5000 s for samples with water contents ranging from 0.02 to 0.45 wt %. Time sweep tests were carried out for different durations to explain the changes undergone by PET before and during small amplitude oscillatory shear measurements. Immediately after the time sweep tests, the PET samples were removed from the rheometer, analyzed by differential scanning calorimetry and their molar mass was obtained by viscometry analysis. It was shown that for all the samples, the delay before test and residence time within the rheometer (i.e. duration of experiment) result in structural changes of the PET samples, such as increase or decrease of molar mass, broadening of molar mass distribution, and branching phenomena. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 116: 3525-3533, 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocomposite membranes containing polysulfone (PSI) and sodium montmorillonite from Wyoming (MMT) were prepared by a combination of solution dispersion and the immersion step of the wet-phase inversion method. The purpose was to study the MMT addition with contents of 0.5 and 3.0 mass% MMT in the preparation of nanocomposite membranes by means of morphology, thermal, mechanical and hydrophilic properties of nanocomposite membranes and to compare these properties to the pure PSf membrane ones. Small-angle X-ray diffraction patterns revealed the formation of intercalated clay mineral layers in the PSf matrix and TEM images also presented an exfoliated structure. A good dispersion of the clay mineral particles was detected by SEM images. Tensile tests showed that both elongation at break and tensile strength of the nanocomposites were improved in comparison to the pristine PSf. The thermal stability of the nanocomposite membranes, evaluated by onset and final temperatures of degradation, was also enhanced. The hydrophilicity of the nanocomposite membranes, determined by water contact angle measurements, was higher; therefore, the MMT addition was useful to produce more hydrophilic membranes. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several composites based on high-density polyethylene (PE), organically modified montmorillonite (OMMT) and ethylene/methacrylic acid copolymer (EMAA) were prepared by melt compounding. Three Na(+)-montmorillonites (MMT) of different precedence were modified with hexadecyl trimethyl ammonium chloride in order to change their nature from hydrophilic to organophilic. The composites morphology was examined by XRD, SEM and TEM. Mechanical properties were evaluated under static conditions. A slight reinforcement was achieved only when OMMT was added to PE. When EMAA was added to the composites, it negatively interacted with OMMT, diminishing the interlayer distance of OMMT, changing the composite morphology, as if OMMT was not present in composites, and deteriorating their mechanical properties. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work we report the characterization of PbO-GeO(2) films containing silver nanoparticles (NPs). Radio Frequency (RF) co-sputtering was used for deposition of amorphous films on glass substrates. Targets of 60PbO-40GeO(2) (in wt%) and bulk silver with purity of 99.99% were RF-sputtered using 3.5 m Torr of argon. The concentration of silver and gold NPs in the films was controlled varying the RF-power applied to the targets (40-50W for the PbO-GeO(2) target; 6-8 W for the metallic target). The films obtained were annealed in air at different temperatures and various periods of time. Absorption measurements have shown strong NPs surface plasmon bands. Different widths and peak wavelengths were observed, indicating that size, shape and distribution of the silver NPs are dependent on the deposition process parameters and on the annealing of the samples. X-Ray Fluorescence and Transmission Electron Microscopy were also used to characterize the samples. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Commercial Nafion® 117 membranes were successfully modified by in-situ reactions (sol-gel of TEOS and/or polymerization of aniline) within Nafion structures. Water-methanol permeability and proton conductivity were investigated in order to determine the potential performance of these membranes for DMFC systems. Silica-polyaniline modification resulted in 84% methanol crossover reduction, from 2.45x10^-5 cm2.s^-1 for conventional Nafion membranes to 3.71x10^-6 cm2.s^-1 for the modified silica-polyaniline composite membrane at 75 degrees C. In addition, conductivity was not hindered, as the polyaniline-Nafion membrane increased from 12.2 to 15 mS.cm^-1 as compared to Nafion, while a reduction of 11% was observed for silica-polyaniline-Nafion composite membrane. The results in this work strongly suggest the potential of polyaniline nanocomposites to enhance the performance of DMFCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laponite-derived materials represent promising materials for optical applications. In this work, Eu(3+)- or Er(3+)-doped laponite xerogels and films were prepared from colloidal dispersion. Homogeneous, crack-free and transparent single layers were deposited on soda-lime substrates with a thickness of 10 mu m. Structural and spectroscopic properties were analyzed by thermal analyses, X-ray diffractometry, transmission electron microscopy, infrared spectroscopy, and luminescence spectroscopy. The addition of a rare earth ion to the laponite does not promote any changes in thermal stability or phase transition. Laponite clay was identified after annealing up to 500 degrees C, with a decrease in basal spacing when the annealing temperature is changed from 100 degrees C to 500 degrees C. Enstatite polymorphs and amorphous silicate phases were observed after heat treatment at 700 degrees C and 900 degrees C. Stationary and time-dependent luminescence spectra in the visible region for Eu(3+), and (5)D(0) lifetime are discussed in terms of thermal treatment and structural evolution. In the layered host, the Eu(3+) ions are distributed in many different local environments. However, Eu(3+) ions were found to occupy at least two symmetry sites, and the ions are preferentially incorporated into the crystalline enstatite for the materials annealed at 700 degrees C and 900 degrees C. A (5)D(0) lifetime of 1.3 ms and 3.1 ms was obtained for Eu(3+) ions in an amorphous silicate and crystalline MgSiO(3) local environment, respectively. Strong Er(3+) emission at the 1550 nm region was observed for the materials annealed at 900 degrees C, with a bandwidth of 44 nm. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maghemite-based bovine serum albumin (BSA) nanocomposites have been investigated using photoacustic spectroscopy (PAS). Features in the PAS spectra were analyzed in terms of three bands (band-C, band-S, and band-L). Though the observed PAS peak positions are insensitive to the nanoparticle concentration the PAS peak intensity displays a different behaviour. For band-C the PAS intensity scales almost linearly with the nanoparticle concentration in the hosting template. Nevertheless, it was found that the PAS intensity of band-L scales sub-linearly with the nanoparticle concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article reports a study on the preparation, densification process, and structural and optical properties of SiO(2)-Ta(2)O(5) nanocomposite films obtained by the sol-gel process. The films were doped with Er(3+) and the Si:Ta molar ratio was 90:10. Values of refractive index, thickness and vibrational modes in terms of the number of layers and thermal annealing time are described for the films. The densification process is accompanied by OH group elimination, increase in the refractive index, and changes in film thickness. Full densification of the film is acquired after 90 min of annealing at 900 degrees C. The onset of crystallization and devitrification, with the growth of Ta(2)O(5) nanocrystals occurs with film densification, evidenced by high-resolution transmission electron microscopy. The Er(3+)-doped nanocomposite annealed at 900 degrees C consists of Ta(2)O(5) nanoparticles, with sizes around 2 nm, dispersed in the SiO(2) amorphous phase. The main emission peak of the film is detected at around 1532 nm, which can be assigned to the (4)I(13/2)->(4)I(15/2) transition of the Er(3+) ions present in the nanocomposites. This band has a full width at half medium of 64 nm, and the lifetime measured for the (4)I(13/2) levels is 5.4 ms, which is broader compared to those of other silicate systems. In conclusion, the films obtained in this work are excellent candidates for use as active planar waveguide. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vanadyl phosphate and its hybrid compounds have proven to undergo electrochemical intercalation and de-intercalation of lithium ions, which enables its use as cathode material for Li ion rechargeable batteries. In this context, vanadyl phosphate di-hydrate/polyaniline derivatives hybrid films were synthesized via the exfoliation and reconstruction approach in order to evaluate their potential use as cathode in ion lithium batteries. X-ray diffraction patterns indicate that the lamellar structure of the inorganic matrix is maintained, consistent with the topotactic process. In the scanning electron micrographs, hybrid films exhibit rough surface consisting of warped and cracked crystallites, quite different from vanadyl phosphate di-hydrate square platelets crystallites. Electrochemical evaluation using cyclic voltammetry and charge-discharge galvanostatic techniques shows small differences between the charge and the discharge curves, indicating an irreversibility of the hybrid systems. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the interfacial interactions and structure is important to better design and application of organic-inorganic nanohybrids. This paper presents our recent molecular dynamic studies on organoclays and polymer nanocomposites, including the layering behavior of organoclays, structural and dynamic properties of dioctadecyldimethyl ammoniums in organoclays, and interfacial interactions and structure of polyurethane nanocomposites. The results demonstrate that the layering behaviors of organoclays are closely related to the chain length of quaternary alkyl ammoniums and cation exchangeable capacity of clays. In addition to typical layered structures such as monolayer, bilayer and pseudo-trilayer, a pseudo-quadrilayer structure was also observed in organoclays modified with dioctadecyldimethyl ammoniums (DODDMA). In such a structure, alkyl chains do not lie flat within a single layer but interlace, and also jump to the next layer or even the next nearest layer. Moreover, the diffusion constants of nitrogen and methylene atoms increase with the temperature and methelene towards the tail groups. For polyurethane nanocomposite, the van der Waals interaction between apolar alkyl chains and soft segments of polyurethane predominates the interactions between organoclay and polyurethane. Different from most bulk polyurethane systems, there is no distinct phase-separated structure for the polyurethane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to obtain and to characterize microemulsions containing 5-aminolevulinic acid (5-ALA) and to investigate the influence of these systems in drug skin permeation for further topical photodynamic therapy (PDT). 5-ALA was incorporated in water-in-oil (W/O), bicontinuous (Bc), and oil-in-water (O/W) microemulsions obtained by the titration of ethyl oleate and PEG-8 caprylic/capric glycerides:polyglyceryl-6 dioleate (3:1) mixtures with water. Selected systems were characterized by conductivity, viscosity, size of the droplets, and drug release. The stability of the drug in the microemulsions was also assessed. Moreover, the in vitro and in vivo skin permeation of 5-ALA was investigated using diffusion cells and confocal scanning laser microscopy (CSLM), respectively. Despite the fact that the O/W microemulsion decreased the 5-ALA diffusion coefficient and retarded the drug release, it also significantly increased the in vitro drug skin permeation when compared to other 5-ALA carriers. It was observed by CSLM that the red fluorescence of the skin increased homogeneously in the deeper skin layers when the 5-ALA microemulsion was applied in vivo, probably due to the formation of the photoactive protoporphyrin IX. The microemulsion developed carried 5-ALA to the deeper skin layers, increasing the red fluorescence of the skin and indicating the potentiality of the system for topical 5-ALA-PDT. (C) 2010 Elsevier B.V. All rights reserved.