943 resultados para Bayesian phylogeny
Resumo:
The variability observed in drug exposure has a direct impact on the overall response to drug. The largest part of variability between dose and drug response resides in the pharmacokinetic phase, i.e. in the dose-concentration relationship. Among possibilities offered to clinicians, Therapeutic Drug Monitoring (TDM; Monitoring of drug concentration measurements) is one of the useful tool to guide pharmacotherapy. TDM aims at optimizing treatments by individualizing dosage regimens based on blood drug concentration measurement. Bayesian calculations, relying on population pharmacokinetic approach, currently represent the gold standard TDM strategy. However, it requires expertise and computational assistance, thus limiting its large implementation in routine patient care. The overall objective of this thesis was to implement robust tools to provide Bayesian TDM to clinician in modern routine patient care. To that endeavour, aims were (i) to elaborate an efficient and ergonomic computer tool for Bayesian TDM: EzeCHieL (ii) to provide algorithms for drug concentration Bayesian forecasting and software validation, relying on population pharmacokinetics (iii) to address some relevant issues encountered in clinical practice with a focus on neonates and drug adherence. First, the current stage of the existing software was reviewed and allows establishing specifications for the development of EzeCHieL. Then, in close collaboration with software engineers a fully integrated software, EzeCHieL, has been elaborated. EzeCHieL provides population-based predictions and Bayesian forecasting and an easy-to-use interface. It enables to assess the expectedness of an observed concentration in a patient compared to the whole population (via percentiles), to assess the suitability of the predicted concentration relative to the targeted concentration and to provide dosing adjustment. It allows thus a priori and a posteriori Bayesian drug dosing individualization. Implementation of Bayesian methods requires drug disposition characterisation and variability quantification trough population approach. Population pharmacokinetic analyses have been performed and Bayesian estimators have been provided for candidate drugs in population of interest: anti-infectious drugs administered to neonates (gentamicin and imipenem). Developed models were implemented in EzeCHieL and also served as validation tool in comparing EzeCHieL concentration predictions against predictions from the reference software (NONMEM®). Models used need to be adequate and reliable. For instance, extrapolation is not possible from adults or children to neonates. Therefore, this work proposes models for neonates based on the developmental pharmacokinetics concept. Patients' adherence is also an important concern for drug models development and for a successful outcome of the pharmacotherapy. A last study attempts to assess impact of routine patient adherence measurement on models definition and TDM interpretation. In conclusion, our results offer solutions to assist clinicians in interpreting blood drug concentrations and to improve the appropriateness of drug dosing in routine clinical practice.
Resumo:
BACKGROUND: The historical orogenesis and associated climatic changes of mountain areas have been suggested to partly account for the occurrence of high levels of biodiversity and endemism. However, their effects on dispersal, differentiation and evolution of many groups of plants are still unknown. In this study, we examined the detailed diversification history of Primula sect. Armerina, and used biogeographic analysis and macro-evolutionary modeling to investigate a series of different questions concerning the evolution of the geographical and ecological distribution of the species in this section. RESULTS: We sequenced five chloroplast and one nuclear genes for species of Primula sect. Armerina. Neither chloroplast nor nuclear trees support the monophyly of the section. The major incongruences between the two trees occur among closely related species and may be explained by hybridization. Our dating analyses based on the chloroplast dataset suggest that this section began to diverge from its relatives around 3.55 million years ago, largely coinciding with the last major uplift of the Qinghai-Tibet Plateau (QTP). Biogeographic analysis supports the origin of the section in the Himalayan Mountains and dispersal from the Himalayas to Northeastern QTP, Western QTP and Hengduan Mountains. Furthermore, evolutionary models of ecological niches show that the two P. fasciculata clades have significantly different climatic niche optima and rates of niche evolution, indicating niche evolution under climatic changes and further providing evidence for explaining their biogeographic patterns. CONCLUSION: Our results support the hypothesis that geologic and climatic events play important roles in driving biological diversification of organisms in the QTP area. The Pliocene uplift of the QTP and following climatic changes most likely promoted both the inter- and intraspecific divergence of Primula sect. Armerina. This study also illustrates how niche evolution under climatic changes influences biogeographic patterns.
Resumo:
Alpine tree-line ecotones are characterized by marked changes at small spatial scales that may result in a variety of physiognomies. A set of alternative individual-based models was tested with data from four contrasting Pinus uncinata ecotones in the central Spanish Pyrenees to reveal the minimal subset of processes required for tree-line formation. A Bayesian approach combined with Markov chain Monte Carlo methods was employed to obtain the posterior distribution of model parameters, allowing the use of model selection procedures. The main features of real tree lines emerged only in models considering nonlinear responses in individual rates of growth or mortality with respect to the altitudinal gradient. Variation in tree-line physiognomy reflected mainly changes in the relative importance of these nonlinear responses, while other processes, such as dispersal limitation and facilitation, played a secondary role. Different nonlinear responses also determined the presence or absence of krummholz, in agreement with recent findings highlighting a different response of diffuse and abrupt or krummholz tree lines to climate change. The method presented here can be widely applied in individual-based simulation models and will turn model selection and evaluation in this type of models into a more transparent, effective, and efficient exercise.
Resumo:
The perceived low levels of genetic diversity, poor interspecific competitive and defensive ability, and loss of dispersal capacities of insular lineages have driven the view that oceanic islands are evolutionary dead ends. Focusing on the Atlantic bryophyte flora distributed across the archipelagos of the Azores, Madeira, the Canary Islands, Western Europe, and northwestern Africa, we used an integrative approach with species distribution modeling and population genetic analyses based on approximate Bayesian computation to determine whether this view applies to organisms with inherent high dispersal capacities. Genetic diversity was found to be higher in island than in continental populations, contributing to mounting evidence that, contrary to theoretical expectations, island populations are not necessarily genetically depauperate. Patterns of genetic variation among island and continental populations consistently fitted those simulated under a scenario of de novo foundation of continental populations from insular ancestors better than those expected if islands would represent a sink or a refugium of continental biodiversity. We, suggest that the northeastern Atlantic archipelagos have played a key role as a stepping stone for transoceanic migrants. Our results challenge the traditional notion that oceanic islands are the end of the colonization road and illustrate the significant role of oceanic islands as reservoirs of novel biodiversity for the assembly of continental floras.
Resumo:
BACKGROUND: Major factors influencing the phenotypic diversity of a lineage can be recognized by characterizing the extent and mode of trait evolution between related species. Here, we compared the evolutionary dynamics of traits associated with floral morphology and climatic preferences in a clade composed of the genera Codonanthopsis, Codonanthe and Nematanthus (Gesneriaceae). To test the mode and specific components that lead to phenotypic diversity in this group, we performed a Bayesian phylogenetic analysis of combined nuclear and plastid DNA sequences and modeled the evolution of quantitative traits related to flower shape and size and to climatic preferences. We propose an alternative approach to display graphically the complex dynamics of trait evolution along a phylogenetic tree using a wide range of evolutionary scenarios. RESULTS: Our results demonstrated heterogeneous trait evolution. Floral shapes displaced into separate regimes selected by the different pollinator types (hummingbirds versus insects), while floral size underwent a clade-specific evolution. Rates of evolution were higher for the clade that is hummingbird pollinated and experienced flower resupination, compared with species pollinated by bees, suggesting a relevant role of plant-pollinator interactions in lowland rainforest. The evolution of temperature preferences is best explained by a model with distinct selective regimes between the Brazilian Atlantic Forest and the other biomes, whereas differentiation along the precipitation axis was characterized by higher rates, compared with temperature, and no regime or clade-specific patterns. CONCLUSIONS: Our study shows different selective regimes and clade-specific patterns in the evolution of morphological and climatic components during the diversification of Neotropical species. Our new graphical visualization tool allows the representation of trait trajectories under parameter-rich models, thus contributing to a better understanding of complex evolutionary dynamics.
Resumo:
Over the past few decades, age estimation of living persons has represented a challenging task for many forensic services worldwide. In general, the process for age estimation includes the observation of the degree of maturity reached by some physical attributes, such as dentition or several ossification centers. The estimated chronological age or the probability that an individual belongs to a meaningful class of ages is then obtained from the observed degree of maturity by means of various statistical methods. Among these methods, those developed in a Bayesian framework offer to users the possibility of coherently dealing with the uncertainty associated with age estimation and of assessing in a transparent and logical way the probability that an examined individual is younger or older than a given age threshold. Recently, a Bayesian network for age estimation has been presented in scientific literature; this kind of probabilistic graphical tool may facilitate the use of the probabilistic approach. Probabilities of interest in the network are assigned by means of transition analysis, a statistical parametric model, which links the chronological age and the degree of maturity by means of specific regression models, such as logit or probit models. Since different regression models can be employed in transition analysis, the aim of this paper is to study the influence of the model in the classification of individuals. The analysis was performed using a dataset related to the ossifications status of the medial clavicular epiphysis and results support that the classification of individuals is not dependent on the choice of the regression model.
Resumo:
In the past few decades, the rise of criminal, civil and asylum cases involving young people lacking valid identification documents has generated an increase in the demand of age estimation. The chronological age or the probability that an individual is older or younger than a given age threshold are generally estimated by means of some statistical methods based on observations performed on specific physical attributes. Among these statistical methods, those developed in the Bayesian framework allow users to provide coherent and transparent assignments which fulfill forensic and medico-legal purposes. The application of the Bayesian approach is facilitated by using probabilistic graphical tools, such as Bayesian networks. The aim of this work is to test the performances of the Bayesian network for age estimation recently presented in scientific literature in classifying individuals as older or younger than 18 years of age. For these exploratory analyses, a sample related to the ossification status of the medial clavicular epiphysis available in scientific literature was used. Results obtained in the classification are promising: in the criminal context, the Bayesian network achieved, on the average, a rate of correct classifications of approximatively 97%, whilst in the civil context, the rate is, on the average, close to the 88%. These results encourage the continuation of the development and the testing of the method in order to support its practical application in casework.
Resumo:
The interpretation of complex DNA profiles is facilitated by a Bayesian approach. This approach requires the development of a pair of propositions: one aligned to the prosecution case and one to the defense case. This note explores the issue of proposition setting in an adversarial environment by a series of examples. A set of guidelines generalize how to formulate propositions when there is a single person of interest and when there are multiple individuals of interest. Additional explanations cover how to handle multiple defense propositions, relatives, and the transition from subsource level to activity level propositions. The propositions depend on case information and the allegations of each of the parties. The prosecution proposition is usually known. The authors suggest that a sensible proposition is selected for the defense that is consistent with their stance, if available, and consistent with a realistic defense if their position is not known.
Resumo:
The genus Prunus L. is large and economically important. However, phylogenetic relationships within Prunus at low taxonomic level, particularly in the subgenus Amygdalus L. s.l., remain poorly investigated. This paper attempts to document the evolutionary history of Amygdalus s.l. and establishes a temporal framework, by assembling molecular data from conservative and variable molecular markers. The nuclear s6pdh gene in combination with the plastid trnSG spacer are analyzed with bayesian and maximum likelihood methods. Since previous phylogenetic analysis with these markers lacked resolution, we additionally analyzed 13 nuclear SSR loci with the δµ2 distance, followed by an unweighted pair group method using arithmetic averages algorithm. Our phylogenetic analysis with both sequence and SSR loci confirms the split between sections Amygdalus and Persica, comprising almonds and peaches, respectively. This result is in agreement with biogeographic data showing that each of the two sections is naturally distributed on each side of the Central Asian Massif chain. Using coalescent based estimations, divergence times between the two sections strongly varied when considering sequence data only or combined with SSR. The sequence-only based estimate (5 million years ago) was congruent with the Central Asian Massif orogeny and subsequent climate change. Given the low level of differentiation within the two sections using both marker types, the utility of combining microsatellites and data sequences to address phylogenetic relationships at low taxonomic level within Amygdalus is discussed. The recent evolutionary histories of almond and peach are discussed in view of the domestication processes that arose in these two phenotypically-diverging gene pools: almonds and peaches were domesticated from the Amygdalus s.s. and Persica sections, respectively. Such economically important crops may serve as good model to study divergent domestication process in close genetic pool.
Resumo:
Peer-reviewed
Resumo:
After publication of this work in 'International Journal of Health Geographics' on 13 january 2011 was wrong. The map of Barcelona in Figure two (figure 1 here) was reversed. The final correct Figure is presented here
Resumo:
In mathematical modeling the estimation of the model parameters is one of the most common problems. The goal is to seek parameters that fit to the measurements as well as possible. There is always error in the measurements which implies uncertainty to the model estimates. In Bayesian statistics all the unknown quantities are presented as probability distributions. If there is knowledge about parameters beforehand, it can be formulated as a prior distribution. The Bays’ rule combines the prior and the measurements to posterior distribution. Mathematical models are typically nonlinear, to produce statistics for them requires efficient sampling algorithms. In this thesis both Metropolis-Hastings (MH), Adaptive Metropolis (AM) algorithms and Gibbs sampling are introduced. In the thesis different ways to present prior distributions are introduced. The main issue is in the measurement error estimation and how to obtain prior knowledge for variance or covariance. Variance and covariance sampling is combined with the algorithms above. The examples of the hyperprior models are applied to estimation of model parameters and error in an outlier case.
Resumo:
Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation. In addition, T. maroccanus may harbour several cryptic species.
Resumo:
This paper sets out to identify the initial positions of the different decisionmakers who intervene in a group decision making process with a reducednumber of actors, and to establish possible consensus paths between theseactors. As a methodological support, it employs one of the most widely-knownmulticriteria decision techniques, namely, the Analytic Hierarchy Process(AHP). Assuming that the judgements elicited by the decision makers follow theso-called multiplicative model (Crawford and Williams, 1985; Altuzarra et al.,1997; Laininen and Hämäläinen, 2003) with log-normal errors and unknownvariance, a Bayesian approach is used in the estimation of the relative prioritiesof the alternatives being compared. These priorities, estimated by way of themedian of the posterior distribution and normalised in a distributive manner(priorities add up to one), are a clear example of compositional data that will beused in the search for consensus between the actors involved in the resolution ofthe problem through the use of Multidimensional Scaling tools