989 resultados para Bacterial artificial chromosome sequencing
Resumo:
The molar fractions of guanine plus cytosine (GC) in DNA were determined for 36 yeast artificial chromosomes (YACs) which almost completely cover human chromosome band Xq28, a terminal reverse band, corresponding to about 8 Mb of DNA. This allowed the construction of the most complete compositional map to date of a chromosomal band; three regions were observed: (i) a proximal 3.5-Mb region formed by GC-poor L and GC-rich H1 isochores; (ii) a middle 2,2-Mb region essentially formed by a GC-rich H2 isochore and a very GC-rich H3 isochore separated by a GC-poor L isochore, YACs from this region being characterized by a striking compositional heterogeneity and instability; and (iii) a distal 1.3-Mb region exclusively formed by GC-poor L isochores. Gene and CpG island concentrations increased with the GC levels of the isochores, as expected. Xq28 exemplifies a subset of reverse bands which are different from the two other subsets, namely from telomeric bands, which are characterized by specific cytogenetic properties and by the predominance of H2 and H3 isochores, and from the majority of reverse bands, which do not contain H2 and H3 isochores.
Resumo:
A polymorphic C-->T transition located on the human Y chromosome was found by the systematic comparative sequencing of Y-specific sequence-tagged sites by denaturing high-performance liquid chromatography. The results of genotyping representative global indigenous populations indicate that the locus is polymorphic exclusively within the Western Hemisphere. The pre-Columbian T allele occurs at > 90% frequency within the native South and Central American populations examined, while its occurrence in North America is approximately 50%. Concomitant genotyping at the polymorphic tetranucleotide microsatellite DYS19 locus revealed that the C-->T mutation displayed significant linkage disequilibrium with the 186-bp allele. The data suggest a single origin of linguistically diverse native Americans with subsequent haplotype differentiation within radiating indigenous populations as well as post-Columbian European and African gene flow. The mutation may have originated either in North America at a very early time during the expansion or before it, in the ancestral population(s) from which all Americans may have originated. The analysis of linkage of the DYS199 and the DYS19 tetranucleotide loci suggests that the C-->T mutation may have occurred around 30,000 years ago. We estimate the nucleotide diversity over 4.2 kb of the nonrecombining portion of the Y chromosome to be 0.00014. compared to autosomes, the majority of variation is due to the smaller effective population size of the Y chromosome rather than selective sweeps. There begins to emerge a pattern of pronounced geographical localization of Y-specific nucleotide substitution polymorphisms.
Resumo:
DNA molecules undergoing transformation into yeast are highly recombinogenic, even when diverged. We reasoned that transformation-associated recombination (TAR) could be employed to clone large DNAs containing repeat sequences, thereby eliminating the need for in vitro enzymatic reactions such as restriction and ligation and reducing the amount of DNA handling. Gently isolated human DNA was transformed directly into yeast spheroplasts along with two genetically marked (M1 and M2) linearized vectors that contained a human Alu sequence at one end and a telomere sequence at the other end (Alu-CEN-M1-TEL and Alu-M2-TEL). Nearly all the M1-selected transformants had yeast artificial chromosomes (YACs) containing human DNA inserts that varied in size from 70 kb to > 600 kb. Approximately half of these had also acquired the unselected M2 marker. The mitotic segregational stability of YACs generated from one (M1) or two (M1 and M2) vector(s) was comparable, suggesting de novo generation of telomeric ends. Since no YACs were isolated when rodent DNAs or a vector lacking an Alu sequence was used, the YACs were most likely the consequence of TAR between the repeat elements on the vector(s) and the human DNA. Using the BLUR13 Alu-containing vector, we demonstrated that human DNA could be efficiently cloned from mouse cells that contained a single human chromosome 16. The distribution of cloned DNAs on chromosome 16 was determined by fluorescence in situ hybridization. We propose that TAR cloning can provide an efficient means for generating YACs from specific chromosomes and subchromosome fragments and that TAR cloning may be useful for isolating families of genes and specific genes from total genome DNA.
Resumo:
An intrinsic feature of yeast artificial chromosomes (YACs) is that the cloned DNA is generally in the same size range (i.e., approximately 200-2000 kb) as the endogenous yeast chromosomes. As a result, the isolation of YAC DNA, which typically involves separation by pulsed-field gel electrophoresis, is frequently confounded by the presence of a comigrating or closely migrating endogenous yeast chromosome(s). We have developed a strategy that reliably allows the isolation of any YAC free of endogenous yeast chromosomes. Using recombination-mediated chromosome fragmentation, a set of Saccharomyces cerevisiae host strains was systematically constructed. Each strain contains defined alterations in its electrophoretic karyotype, which provide a large-size interval devoid of endogenous chromosomes (i.e., a karyotypic "window"). All of the constructed strains contain the kar1-delta 15 mutation, thereby allowing the efficient transfer of a YAC from its original host into an appropriately selected window strain using the kar1-transfer procedure. This approach provides a robust and efficient means to obtain relatively pure YAC DNA regardless of YAC size.
Resumo:
We have employed Arabidopsis thaliana as a model host plant to genetically dissect the molecular pathways leading to disease resistance. A. thaliana accession Col-0 is susceptible to the bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000 but resistant in a race-specific manner to DC3000 carrying any one of the cloned avirulence genes avrB, avrRpm1, avrRpt2, and avrPph3. Fast-neutron-mutagenized Col-0 M2 seed was screened to identify mutants susceptible to DC3000(avrB). Disease assays and analysis of in planta bacterial growth identified one mutant, ndr1-1 (nonrace-specific disease resistance), that was susceptible to DC3000 expressing any one of the four avirulence genes tested. Interestingly, a hypersensitive-like response was still induced by several of the strains. The ndr1-1 mutation also rendered the plant susceptible to several avirulent isolates of the fungal pathogen Peronospora parasitica. Genetic analysis of ndr1-1 demonstrated that the mutation segregated as a single recessive locus, located on chromosome III. Characterization of the ndr1-1 mutation suggests that a common step exists in pathways of resistance to two unrelated pathogens.
Resumo:
A cana-de-açúcar é uma cultura agrícola de grande importância econômica para o Brasil, e a expansão de seu cultivo para solos marginais requer uma maior utilização de fertilizantes à base de nitrogênio (N). Na maioria dos países produtores, a adubação nitrogenada se baseia em altas doses de aplicação, enquanto, no Brasil, o seu uso é relativamente baixo devido, em parte, ao processo de fixação biológica de nitrogênio (FBN) pela ação de bactérias diazotróficas. Além da FBN, as plantas adquirem fontes de N, como amônio e nitrato, por meio de transportadores de membranas localizados nas raízes. Há evidências que a associação com microrganismos pode favorecer as plantas por meio da regulação dos genes de transportadores de N. Desta forma, este trabalho teve como objetivo caracterizar o transporte de amônio e nitrato, avaliando a expressão gênica dos principais transportadores de N em cana-de-açúcar cultivada in vitro sob o efeito da associação com bactérias diazotróficas. Também foi descrita a comunidade bacteriana de plântulas in vitro, bem como o efeito da fertilização com N e da inoculação com bactérias diazotróficas em plantas maduras. Plântulas de \'SP70- 1143\' e \'Chunee\', que contrastam para FBN, foram empregadas em ensaios in vitro sob diversas concentrações e fontes de N em associação ou não com uma estirpe de Gluconacetobacter diazotrophicus ou um mistura de bactérias diazotróficas (G. diazotrophicus, Herbaspirillum seropedicae, H. rubrisubalbicans, Azospirillum amazonense e Burkholderia tropica). A caracterização do transporte de N por meio de ensaios de absorção de nitrato e amônio marcados (15N) revelou que a interação entre cana-de-açúcar x G. diazotrophicus induziu a expressão do gene do transportador de nitrato ScNRT2.1, o que levou a uma tendência no aumento no influxo de nitrato, assim como dos genes de transportadores de amônio ScAMT1.1 e ScAMT1.3, resultando em maiores influxos de amônio apenas para a cultivar \'SP70- 1143\'. Já a associação da cana-de-açúcar com a mistura de bactérias diazotróficas revelou que somente houve indução transcricional de ScAMT1.1, o que resultou na maior absorção de amônio em \'SP70-1143\'. Por sua vez, quando analisada a interação in vitro por 30 dias, a presença da bactéria, apesar de transiente, possivelmente favoreceu a expressão dos genes de transportadores de nitrato ScNRT1.1 e ScNRT2.1, e do transportador de amônio ScAMT1.1, resultando no maior acúmulo de 15N-nitrato de amônio nas plantas de \'SP70-1143\'. Foi detectada uma comunidade bacteriana associada a plântulas micropropagadas, a qual é distinta entre os genótipos \'SP70-1143\' e \'Chunee\' e se altera com a inoculação com G. diazotrophicus. Para as plantas cultivadas em campo, a comunidade bacteriana existente foi alterada pela fertilização de N, mas não pela inoculação com diazotróficas. Portanto, a inoculação com bactérias diazotróficas parece induzir a expressão dos principais genes transportadores de amônio e nitrato em plântulas do genótipo \'SP70-1143\' resultando na maior absorção de fontes inorgânicas de N.
Resumo:
We describe the antibiotic resistance profiling of bacterial isolates collected from Ny-Alesund, Arctic, as part of the Indian Arctic Summer Expedition 2009. It was interesting to note that the bacterial isolates collected from the Arctic showed multidrug resistance. 32% of the isolates were found to be multi- drug resistant with several combinations of antibiotics. The 16S rRNA sequencing results shows a diverse group of bacteria belonging to Phyla Proteobacteria, Actinobacteria and Bacteriodetes and their relatedness was studied by phylogenetic analysis. While analysing the plasmid profiling, the most resistant two strains of Pseudomonas migulae showed multiple plasmids of varying sizes ~5.2-5.3 kb and ~9.5 kb. The extent and frequency of multidrug resistance in the polar bacteria deserves close monitoring and efforts to understand the various molecular mechanisms of drug resistance and control the spread of antibiotic resistance in polar environment is called for.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-05
Resumo:
Distal spinal muscular atrophy is a heterogeneous group of neuromuscular disorders caused by progressive anterior born cell degeneration and characterized by progressive motor weakness and muscular atrophy, predominantly in the distal parts of the limbs. Here we report on chronic autosomal recessive distal spinal muscular atrophy in a large, inbred family with onset at various ages. Because this condition had some of the same clinical features as spinal muscular atrophy with respiratory distress, we tested the disease gene for linkage to chromosome 11q and mapped the disease locus to chromosome 11q13 in the genetic interval that included the spinal muscular atrophy with respiratory distress gene (D11S1889-D11S1321, Z(max) = 4.59 at theta = 0 at locus D11S4136). The sequencing of IGHMBP2, the human homologue of the mouse neuromuscular degeneration gene (nmd) that accounts for spinal muscular atrophy with respiratory distress, failed to detect any mutation in our chronic distal spinal muscular atrophy patients, suggesting that spinal muscular atrophy with respiratory distress and chronic distal spinal muscular atrophy are caused by distinct genes located in the so-me chromosomal region. In addition, the high intrafamilial variability in age at onset raises the question of whether nonallelic modifying genes could be involved in chronic distal spinal muscular atrophy.
Resumo:
A soil suspension was used as a source to initiate the development of microbial communities in flow cells irrigated with 2,4-dichlorophenoxyacetic acid (2,4-D) (25 mu g ml(-1)). Culturable bacterial members of the community were identified by 16S rRNA gene sequencing and found to be members of the genera Pseudomonas, Burkholderia, Collimonas and Rhodococcus. A 2,4-D degrading donor strain, Pseudomonas putida SM 1443 (pJP4::gfp), was inoculated into flow cell chambers containing 2-day old biofilm communities. Transfer of pJP4::gfp from the donor to the bacterial community was detectable as GFP fluorescing cells and images were captured using confocal scanning laser microscopy (GFP fluorescence was repressed in the donor due to the presence of a chromosomally located lacl(q) repressor gene). Approximately 5-10 transconjugant microcolonies, 20-40 mu m in diameter, could be seen to develop in each chamber. A 2,4-D degrading transconjugant strain was isolated from the flow cell system belonging to the genus Burkholderia.
Resumo:
Two bacterial strains, 2AC and 4BC, both capable of utilizing naphthalene-2-sulfonic acid (2-NSA) as a sole source of carbon, were isolated from activated sludges previously exposed to tannery wastewater. Enrichments were carried out in mineral salt medium (MSM) with 2-NSA as the sole carbon source. 16S rDNA sequencing analysis indicated that 2AC is an Arthrobacter sp. and 4BC is a Comamonas sp. Within 33 h, both isolates degraded 100% of 2-NSA in MSM and also 2-NSA in non-sterile tannery wastewater. The yield coefficient was 0.33 g biomass dry weight per gram of 2-NSA. A conceptual model, which describes the aerobic transformation of organic matter, was used for interpreting the biodegradation kinetics of 2-NSA. The half-lives for 2-NSA, at initial concentrations of 100 and 500 mg/l in MSM, ranged from 20 h (2AC) to 26 h (4BC) with lag-phases of 8 h (2AC) and 12 h (4BC). The carbon balance indicates that 75-90% of the initial TOC (total organic carbon) was mineralized, 5-20% remained as DOC (dissolved organic carbon) and 3-10% was biomass carbon. The principal metabolite of 2-NSA biodegradation (in both MSM and tannery wastewater) produced by Comamonas sp. 4BC had a MW of 174 and accounted for the residual DOC (7.0-19.0% of the initial TOC and 66% of the remaining TOC). Three to ten percent of the initial TOC (33% of the remaining TOC) was associated with biomass. The metabolite was not detected when Arthrobacter sp. 2AC was used, and a lower residual DOC and biomass carbon were recorded. This suggests that the two strains may use different catabolic pathways for 2-NSA degradation. The rapid biodegradation of 2-NSA (100 mg/l) added to non-sterile tannery wastewater (total 2-NSA, 105 mg/l) when inoculated with either Arthrobacter 2AC or Comamonas 4BC showed that both strains were able to compete with the indigenous microorganisms and degrade 2-NSA even in the presence of alternate carbon sources (DOC in tannery wastewater = 91 mg/l). The results provide information useful for the rational design of bioreactors for tannery wastewater treatment.
Resumo:
The diversity of the culturable microbial communities was examined in two sponge species-Pseudoceratina clavata and Rhabdastrella globostellata. Isolates were characterized by 16S rRNA gene sequencing and phylogenetic analysis. The bacterial community structures represented in both sponges were found to be similar at the phylum level by the same four phyla in this study and also at a finer scale at the species level in both Firmicutes and Alphaproteobacteria. The majority of the Alphaproteobacteria isolates were most closely related to isolates from other sponge species including alpha proteobacterium NW001 sp. and alpha proteobacterium MBIC3368. Members of the low %G + C gram-positive (phylum Firmicutes), high %G + C gram-positive (phylum Actinobacteria), and Cytophaga-Flavobacterium-Bacteroides (phylum Bacteroidetes) phyla of domain Bacteria were also represented in both sponges. In terms of culturable organisms, taxonomic diversity of the microbial community in the two sponge species displays similar structure at phylum level. Within phyla, isolates often belonged to the same genus-level monophyletic group. Community structure and taxonomic composition in the two sponge species P. clavata and Rha. globostellata share significant features with those of other sponge species including those from widely separated geographical and climatic regions of the sea.
Resumo:
In the horse, carbohydrate overload is thought to play an integral role in the onset of laminitis by drastically altering the profile of bacterial populations in the hindgut. The objectives of this study were to develop and validate microbial ecology methods to monitor changes in bacterial populations throughout the course of experimentally induced laminitis and to identify the predominant oligofructose-utilizing organisms. Laminitis was induced in five horses by administration of oligofructose. Faecal specimens were collected at 8 h intervals from 72 h before to 72 h after the administration of oligofructose. Hindgut microbiota able to utilize oligofructose were enumerated throughout the course of the experiment using habitat-simulating medium. Isolates were collected and representatives identified by 16S rRNA gene sequencing. The majority of these isolates collected belonged to the genus Streptococcus, 91% of which were identified as being most closely related to Streptococcus infantarius ssp. coli. Furthermore, S. infantarius ssp. coli was the predominant oligofructose-utilizing organism isolated before the onset of lameness. Fluorescence in situ hybridization probes developed to specifically target the isolated Streptococcus spp. demonstrated marked population increases between 8 and 16 h post oligofructose administration. This was followed by a rapid population decline which corresponded with a sharp decline in faecal pH and subsequently lameness at 24-32 h post oligofructose administration. This research suggests that streptococci within the Streptococcus bovis/equinus complex may be involved in the series of events which precede the onset of laminitis in the horse.
Resumo:
The laser diode (LD) is a unique light source that can efficiently produce all radiant energy within the narrow wavelength range used most effectively by a photosynthetic microorganism. We have investigated the use of a single type of LID for the cultivation of the well-studied anoxygenic photosynthetic bacterium, Rhodobacter capsulatus (Rb. capsulatus). An array of vertical-cavity surface-emitting lasers (VCSELs) was driven with a current of 25 mA, and delivered radiation at 860 nm with 0.4 nm linewidth. The emitted light was found to be a suitable source of radiant energy for the cultivation of Rb. capsulatus. The dependence of growth rate on incident irradiance was quantified. Despite the unusual nearly monochromatic light source used in these experiments, no significant changes in the pigment composition and in the distribution of bacteriochlorophyll between LHII and LHI-RC were detected in bacterial cells transferred from incandescent light to laser light. We were also able to show that to achieve a given growth rate in a light-limited culture, the VCSEL required only 30% of the electricity needed by an incandescent bulb, which is of great significance for the potential use of laser-devices in biotechnological applications and photobioreactor construction. (c) 2006 Wiley Periodicals, Inc.