896 resultados para BRACHIAL-ARTERY
Resumo:
The rat tail artery has been used for the study of vasoconstriction mediated by alpha(1A)-adrenoceptors (ARs). However, rings from proximal segments of the tail artery (within the initial 4 cm, PRTA) were at least 3- fold more sensitive to methoxamine and phenylephrine (n = 6 - 12; p < 0.05) than rings from distal parts (between the sixth and 10th cm, DRTA). Interestingly, the imidazolines N-[ 5-( 4,5- dihydro- 1H- imidazol-2-yl)-2-hydroxy-5,6,7,8- tetrahydronaphthalen- 1- yl] methanesulfonamide hydrobromide (A-61603) and oxymetazoline, which activate selectively alpha(1A)- ARs, were equipotent in PRTA and DRTA (n = 4 - 12), whereas buspirone, which activates selectively alpha(1D)-AR, was approximate to 70-fold more potent in PRTA than in DRTA (n = 8; p < 0.05). The selective alpha(1D)-AR antagonist 8-[2-[4-(methoxyphenyl)-1-piperazinyl] ethyl]-8-azaspiro[4.5] decane-7,9-dione dihydrochloride (BMY- 7378) was approximate to 70- fold more potent against the contractions induced by phenylephrine in PRTA (pK(B) of approximate to 8.45; n = 6) than in DRTA (pK B of approximate to 6.58; n = 6), although the antagonism was complex in PRTA. 5-Methylurapidil, a selective alpha(1A)-antagonist, was equipotent in PRTA and DRTA (pK(B) of approximate to 8.4), but the Schild slope in DRTA was 0.73 +/- 0.05 ( n = 5). The noncompetitive alpha(1B)-antagonist conotoxin rho-TIA reduced the maximal contraction induced by phenylephrine in DRTA, but not in PRTA. These results indicate a predominant role for alpha(1A)-ARs in the contractions of both PRTA and DRTA but with significant coparticipations of alpha(1D)-ARs in PRTA and alpha(1B)-ARs in DRTA. Semiquantitative reverse transcription-polymerase chain reaction revealed that mRNA encoding alpha(1A)- and alpha(1B)-ARs are similarly distributed in PRTA and DRTA, whereas mRNA for alpha(1D)-ARs is twice more abundant in PRTA. Therefore, alpha(1)-ARs subtypes are differentially distributed along the tail artery. It is important to consider the segment from which the tissue preparation is taken to avoid misinterpretations on receptor mechanisms and drug selectivities. antagonism was complex in PRTA. 5- Methylurapidil, a selective alpha(1A)-antagonist, was equipotent in PRTA and DRTA (pK(B) of approximate to 8.4), but the Schild slope in DRTA was 0.73 +/- 0.05 ( n = 5). The noncompetitive alpha(1B)-antagonist conotoxin rho-TIA reduced the maximal contraction induced by phenylephrine in DRTA, but not in PRTA. These results indicate a predominant role for alpha(1A)-ARs in the contractions of both PRTA and DRTA but with significant coparticipations of alpha(1D)-ARs in PRTA and alpha(1B)-ARs in DRTA. Semiquantitative reverse transcription-polymerase chain reaction revealed that mRNA encoding alpha(1A)- and alpha(1B)- ARs are similarly distributed in PRTA and DRTA, whereas mRNA for alpha(1D)-ARs is twice more abundant in PRTA. Therefore, alpha(1)-ARs subtypes are differentially distributed along the tail artery. It is important to consider the segment from which the tissue preparation is taken to avoid misinterpretations on receptor mechanisms and drug selectivities.
Resumo:
Heparin is the most frequently used drug for the prevention and treatment of thrombosis. Its use, however, is restricted by its side-effects. To study the efficacy of other glycosaminoglycans that could substitute heparin in the management of arterial thrombosis, 60 guinea-pigs were randomly allocated into 6 groups: G1= control, G2= heparin (150 IU/kg), G3= heparan sulfate from beef pancreas (2.5 mg/kg), G4= heparan sulfate from beef lung (2.5 mg/kg), G5= N-acetylated heparan from beef pancreas, G6= dermatan sulfate from beef intestine (2.5 mg/kg). Ten minutes after intravenous injection of the drugs, thrombosis was induced by the injection of a 50% glucose solution into a segment of the right carotid artery isolated between 2 thread loops during 10 minutes. Three hours later the artery was re-exposed and if a thrombus was present it was measured, withdrawn and weighed. Thrombin time and activated partial thromboplastin time were measured in all animals. Thrombus developed in 90% of the animals in the control group, 0% in G2 and G3, 62.5% in G4, 87.5% in G5 and G6. Only in the animals treated with heparin the coagulation tests were prolonged. In conclusion, in the used dose only the heparan sulfate from beef pancreas presented an antithrombotic effect similar to heparin in this experimental model.
Resumo:
This study was designed to analyze the impact of diminished renal perfusion pressure due to renal clipping on the rat model of adriamycin nephropathy. Male Wistar rats, divided into four groups (n = 9 per group) were injected with saline as control (C), adriamycin 3 ml/kg (Ad), saline with the left renal artery clipped (Rv), and adriamycin plus clip (AdRv). After 24 weeks mean arterial pressure (MAP), inulin, and p-aminohippurate (PAH) clearances were performed to evaluate renal function. Morphologic analysis included histologic criteria of percentage of glomerulosclerosis and tubulointerstitial lesion index (TILI). The MAP (mm Hg) was similar between Rv (143 +/- 13) and AdRv (154 +/- 20), but higher (P < .05) than C (120 +/- 8) and Ad (124 +/- 11). Inulin clearance (mL/min/100 g) in Ad (0.2 +/- 0.05) was smaller than in C (0.53 +/- 0.17) and Rv (0.4 +/- 0.01) (P < .05), and was at an intermediate level in AdRv (0.33 +/- 0.2). The level of PAH (mL/min/100 g) was normal at 1.76 in C, and diminished more in Ad (0.58) than in Rv (1.06) and AdRv (1.18) (P < .05). Both Ad and the AdRv nonclipped kidneys had the highest degree of glomerulosclerosis (33% and 25%) and TILI (7% and 8%), respectively, compared with C and Rv (both 0%), whereas the clipped kidneys displayed intermediate degrees (9% and 5%) (P < .05 v nonclipped). The data suggest that diminished perfusion pressure of the clipped kidney, by decreasing the intraglomerular pressure, protects the glomerulus from damage and attenuates the evolution of adriamycin nephropathy. Am J Hypertens 1998;11:1124-1128 (C) 1998 American Journal of Hypertension, Ltd.
Resumo:
Atherosclerotic renal artery stenosis (RAS) and coronary artery disease (CAD) arise from the same multiple risk factors. The purpose of this study was to assess the frequency of previously undiagnosed CAD in patients with angiographically confirmed RAS, by conducting coronary arteriography in the same setting. of 57 consecutive patients referred for renal arteriography on clinical grounds during a 14-month period, 28 had no RAS and 6 had RAS, but previously documented CAD. of the remainder 23 patients. 17 (74%; CI 56%-92%) had both RAS and CAD (7 single vessel, 4 two-vessel, and 7 multivessel disease). The clinical characteristics, such as age, blood pressure (BP) levels, signs of heart failure, were no different between those with and without CAD, although the 4 diabetic patients, the 4 patients with fundoscopic findings of grade III retinopathy, 11 of 14 with peripheral arterial disease, and 7 of 8 patients with prior stroke belonged in the CAD group. None developed complications as a result of the two consecutive procedures. The data suggest that in patients with RAS the frequency of silent CAD is high and cannot be predicted on clinical grounds alone, therefore coronary angiography should be routinely recommended in the same setting.
Resumo:
Objective To assess the brachial plexus block in chickens by an axillary approach and using a peripheral nerve stimulator.Study design Prospective, randomized, double-blinded study.Animals Six, 84-week old, female chickens.Methods Midazolam (1 mg kg(-1)) and butorphanol (1 mg kg(-1)) were administered into the pectoralis muscle. Fifteen minutes later, the birds were positioned in lateral recumbency and following palpation of the anatomic landmarks, a catheter was inserted using an axillary approach to the brachial plexus. Lidocaine or bupivacaine (1 mL kg(-1)) was injected after plexus localization by the nerve stimulator. Sensory function was tested before and after blockade (carpus, radius/ulna, humerus and pectoralis muscle) in the blocked and unblocked wings. The latency to onset of motor and sensory block and the duration of sensory block were recorded. A Friedman nonparametric one-way repeated-measures ANOVA was used to compare scores from baseline values over time and to compare the differences between wings at each time point.Results A total of 18 blocks were performed with a success rate of 66.6% (12/18). The latency for motor block was 2.8 +/- 1.1 and 3.2 +/- 0.4 minutes for lidocaine and bupivacaine, respectively. The latencies for and durations of the sensory block were 6.0 +/- 2.5 and 64.0 +/- 18.0 and 7.8 +/- 5.8 and 91.6 +/- 61.7 minutes for lidocaine and bupivacaine, respectively. There was no statistical difference between these times for lidocaine or bupivacaine. Sensory function was not abolished in nonblocked wings.Conclusions and clinical relevance The brachial plexus block was an easy technique to perform but had a high failure rate. It might be useful for providing anesthesia or postoperative analgesia of the wing in chickens and exotic avian species that have similar wing anatomy.