931 resultados para BOVINE GROWTH-HORMONE
Resumo:
The first trimester of pregnancy is the time during which organogenesis takes place and tissue patterns and organ systems are established. In the second trimester the fetus undergoes major cellular adaptation and an increase in body size, and in the third trimester organ systems mature ready for extrauterine life. In addition, during that very last period of intrauterine life there is a significant increase in body weight. In contrast to the postnatal endocrine control of growth, where the principal hormones directly influencing growth are growth hormone (GH) and the insulin-like growth factors (IGFs) via the GH-IGF axis, fetal growth throughout gestation is constrained by maternal factors and placental function and is coordinated by growth factors. In general, growth disorders only become apparent postnatally, but they may well be related to fetal life. Thus, fetal growth always needs to be considered in the overall picture of human growth as well as in its metabolic development.
Resumo:
Aim of the study was to investigate the possible mechanisms leading to stunted growth and osteoporosis in experimental arthritis. Fourty-two female rats of 7-8 weeks of age were randomly assigned to three groups of 14 animals each: (a) controls; (b) adjuvant-inoculated (AA); and (c) adjuvant-inoculated rats receiving 10 mg cyclosporin A (CsA) orally for 30 days. Biological parameters studied were: hindpaw swelling; vertebral length progression expressed as Delta increments between days 1 and 30 as a parameter of skeletal growth, and estimation of total skeletal mineral content by dual energy X-ray absorptiometry (n=10 each group) on day 30. Endocrine parameters measured were pulsatile release of growth hormone (rGH) on day 30 following jugular cannulation and measurement of insulin-like growth factor (IGF-1) in pooled plasma from rGH profiles. Results can be summarized as follows: Untreated AA rats exhibited local signs of inflammation in comparison with controls (hindpaw diameter 8.1-8.9 mm vs. 5.3-5.6 mm in controls). Treatment with CsA normalized this parameter (4.9-5.6 mm). Vertebral growth was significantly retarded in AA rats in comparison with controls (214+/-32 vs. 473+/-33 microm; p<0.001). Administration of CsA normalized vertebral size increment with a clear tendency to overgrowth (523+/-43 microm, n.s.). There was also a marked reduction in total skeletal mineral content in diseased (AA) rats as compared to controls (5.8+/-0.1 vs. 7.5+/-0.1g [OH-apatite]; p<0.001), and a moderate but significant increment above controls in the group receiving CsA (8.0+/-0.1 vs. 7.5+/-0.1g [OH-appatite]; p<0.04). Integrated rGH profiles exhibited a significant fall in arthritic rats and were completely restored to normal under CsA treatment. A trend toward higher rGH values was observed in the latter group (2908+/-554 in AA vs. 8317+/-1492 ng/ml/240 min in controls; p<0.001, and 10940+/-222 ng/ml/240 min, n.s. in the CsA group). There was a good correlation between skeletal growth and rGH pulsatility (r=0.81; p<0.001). IGF-1 followed a similar pattern (630+/-44 in AA vs. 752+/-30 ng/ml in controls; p<0.04, and 769+/-59 ng/ml in the CsA group, n.s. vs. controls). Thus, a clear tendency to skeletal overgrowth following treatment was observed in agreement with the hormonal data. It can therefore be concluded that, in experimental arthritis, attenuated GH-spiking and reduced circulating IGF-1 appear to be causally related to growth retardation, probably mimicking signs and symptoms observed in juvenile arthritis. Therapy with CsA is followed by normalization of hormonal and biological parameters accompanied by a catch up phenomenon in skeletal growth which is also observed clinically in juvenile arthritis. Generalized osteopenia is a prominent feature seemingly connected with the growth abnormalities as they parallel each other during the evolution of the disease and respond equally to therapy.
Resumo:
INTRODUCTION: The presence of an ectopic posterior pituitary gland (EPP) on magnetic resonance imaging (MRI) is associated with hypopituitarism with one or more hormone deficiencies. We aimed to identify risk factors for having multiple pituitary hormone deficiency (MPHD) compared to isolated growth hormone deficiency (IGHD) in patients with an EPP. METHODS: In 67 patients (45 male) with an EPP on MRI, the site (hypothalamic vs. stalk) and surface area (SA) [ x (maximum diameter/2) x (maximum height/2), mm(2)] of the EPP were recorded and compared in patients with IGHD and MPHD in relation to clinical characteristics. RESULTS: In MPHD (n = 32) compared to IGHD (n = 35) patients: age of presentation was younger (1.4 [0.1-10.7]vs. 4.0 [0.1-11.3] years, P = 0.005), major incidents during pregnancy were increased (47%vs. 20%, P = 0.02) as were admissions to a neonatal intensive care unit (NICU) (60%vs. 26%, P = 0.04), whilst EPP SA was lower (12.3 [2.4-34.6]vs. 25.7 [6.9-48.2] mm(2), P < 0.001). In patients with a hypothalamic (n = 56) compared to a stalk sited EPP (n = 11): prevalence of MPHD was greater (55%vs. 9%,P = 0.05) and EPP surface area was smaller (17.3 [2.4-48.2]vs. 25.3 [11.8-38.5] mm(2), P < 0.001). In regression analysis, after adjusting for age, presence of MPHD was associated with: major incidents during pregnancy (RR 6.8 [95%CI 1.2-37.7]), hypothalamic EPP site (RR 10.9 [1.0-123.9]) and small EPP SA (RR 2.5 [1.0-5.0] for tertiles of SA). CONCLUSION: In patients with an EPP, adverse antenatal events, size (small) and position (hypothalamic) of the posterior pituitary gland on MRI were associated with MPHD. These findings suggest that adverse factors during pregnancy may be important for the development of an EPP.
Resumo:
Through alternative splicing, multiple different transcripts can be generated from a single gene. Alternative splicing represents an important molecular mechanism of gene regulation in physiological processes such as developmental programming as well as in disease. In cancer, splicing is significantly altered. Tumors express a different collection of alternative spliceoforms than normal tissues. Many tumor-associated splice variants arise from genes with an established role in carcinogenesis or tumor progression, and their functions can be oncogenic. This raises the possibility that products of alternative splicing play a pathogenic role in cancer. Moreover, cancer-associated spliceoforms represent potential diagnostic biomarkers and therapeutic targets. G protein-coupled peptide hormone receptors provide a good illustration of alternative splicing in cancer. The wild-type forms of these receptors have long been known to be expressed in cancer and to modulate tumor cell functions. They are also recognized as attractive clinical targets. Recently, splice variants of these receptors have been increasingly identified in various types of cancer. In particular, alternative cholecystokinin type 2, secretin, and growth hormone-releasing hormone receptor spliceoforms are expressed in tumors. Peptide hormone receptor splice variants can fundamentally differ from their wild-type receptor counterparts in pharmacological and functional characteristics, in their distribution in normal and malignant tissues, and in their potential use for clinical applications.
Resumo:
Small peptide hormones produced in the lower part of the brain (hypothalamus) regulate episodic and basal secretion of hormones from the anterior pituitary gland that affect metabolism and growth in cattle. This study focused on long-term growth in young calves subjected to hypophysectomy (HYPOX), hypophyseal stalk transection (HST), and sham operation control (SOC). Crossbred (Hereford x Aberdeen Angus) and Hereford, and Aberdeen Angus calves were HYPOX (n = 5), HST (n = 5), or SOC (n = 8) at 146 days of age, whereas another group was HST (n = 5) or SOC (n = 7) at 273 days of age. Body weight was determined every 21 days from birth to 1008 days of age. From day 146-1008, growth was arrested (P < 0.001) in HYPOX (0.06 kg/day) compared with SOC (0.50 kg/day) calves. Growth continued but at a significantly lower rate (P < 0.05) in calves HST at 146 days (0.32 kg/day) and 273 days (0.32 kg/day) compared with SOC (0.50 kg/day). Although episodic growth hormone (GH) secretion was abolished and peripheral blood serum GH concentration remained consistently lower in HST calves (2.4 ng/ml) than in the SOC (5.5 ng/ml; P < 0.01), the calves continued to grow throughout 1008 days. Peripheral serum thyroid stimulating hormone (TSH) concentration was less (P < 0.05) in HST compared with SOC calves. There was an abrupt decrease (P < 0.001) in serum thyroxine (T4) (4-fold) and triiodothyronine (T3) (3-fold) concentration after surgery that remained to 360 days in HST compared with SOC calves. At sacrifice, pituitary gland weight was markedly reduced (P < 0.001) in HST (0.18 g/100 kg body weight) compared with SOC (0.55 g/100 kg body weight) calves. Histological examination of pituitary glands from HST calves indicated the persistence of secretory GH and TSH cells in the same areas of the anterior pituitary gland as SOC calves. Coronal sections of the gland revealed GH and TSH secreting cells in HST calves that were similar to the controls. These results indicate that long-term growth continues, but at a slower rate, after hypophyseal stalk transection of immature calves in spite of complete abolition of episodic GH secretion and consistently decreased basal secretion of GH, TSH, T4, and T3 compared with sham-operated animals. Growth was abolished after hypophysectomy of immature calves in which circulating GH and TSH was undetectable.
Resumo:
Suboptimal dietary zinc (Zn(2+)) intake is increasingly appreciated as an important public health issue. Zn(2+) is an essential mineral, and infants are particularly vulnerable to Zn(2+) deficiency, as they require large amounts of Zn(2+) for their normal growth and development. Although term infants are born with an important hepatic Zn(2+) storage, adequate Zn(2+) nutrition of infants mostly depends on breast milk or formula feeding, which contains an adequate amount of Zn(2+) to meet the infants' requirements. An exclusively breast-fed 6 months old infant suffering from Zn(2+) deficiency caused by an autosomal dominant negative G87R mutation in the Slc30a2 gene (encoding for the zinc transporter 2 (ZnT-2)) in the mother is reported. More than 20 zinc transporters characterized up to date, classified into two families (Slc30a/ZnT and Slc39a/Zip), reflect the complexity and importance of maintaining cellular Zn(2+) homeostasis and dynamics. The role of ZnTs is to reduce intracellular Zn(2+) by transporting it from the cytoplasm into various intracellular organelles and by moving Zn(2+) into extracellular space. Zips increase intracellular Zn(2+) by transporting it in the opposite direction. Thus the coordinated action of both is essential for the maintenance of Zn(2+) homeostasis in the cytoplasm, and accumulating evidence suggests that this is also true for the secretory pathway of growth hormone.
Resumo:
Hunter syndrome (mucopolysaccharidosis type II) is a rare and life-limiting multisystemic disorder with an X-linked recessive pattern of inheritance. Short stature is a prominent feature of this condition. This analysis aimed to investigate the effects of enzyme replacement therapy with idursulfase on growth in patients enrolled in HOS - the Hunter Outcome Survey which is a multinational observational database. As of Jan 2012, height data before treatment were available for 567 of 740 males followed prospectively after HOS entry. Cross-sectional analysis showed that short stature became apparent after approximately 8 years of age; before this, height remained within the normal range. Age-corrected standardized height scores (z-scores) before and after treatment were assessed using piecewise regression model analysis in 133 patients (8-15 years of age at treatment start; data available on ≥ 1 occasion within +/-24 months of treatment start; growth hormone-treated patients excluded). Results showed that the slope after treatment (slope=-0.005) was significantly improved compared with before treatment (slope=-0.043) (difference=0.038, p=0.004). Analysis of covariates (age at treatment start, cognitive involvement, presence of puberty at the start of ERT, mutation type, functional classification), showed a significant influence on growth of mutation type (height deficit in terms of z-scores most pronounced in patients with deletions/large rearrangements/nonsense mutations, p<0.0001) and age (most pronounced in the 12-15-year group, p<0.0001). Cognitive involvement, pubertal status at the start of ERT and functional classification were not related to the growth deficit or response to treatment. In conclusion, the data showed an improvement in growth rate in patients with Hunter syndrome following idursulfase treatment.
Resumo:
OBJECTIVE We investigated the skeletal growth profile of female rats from birth to senescence (100weeks) on the basis of sequential radiometrical, hormonal and biochemical parameters. DESIGN Weaning rats entered the study which was divided into two sections: a) sequential measurements of vertebral and tibial growths and bone mineral density (BMD), estimation of mineral content of the entire skeleton (BMC) and chemical analysis of vertebral Ca; and b) determination of basal and pulsatile growth hormone (rGH), insulin-like growth hormone (IGF-I), estradiol (E2), parathyroid hormone (PTH), osteocalcin (OC) and urinary d-pyridinoline (dp) throughout the experimental period. RESULTS Vertebral and tibial growths ceased at week 25 whereas BMD and BMC as well as total vertebral Ca exhibited a peak bone mass at week 40. rGH pulsatile profiles were significantly higher in younger animals coinciding with the period of active growth and IGF-I peaked at 7weeks, slowly declining thereafter and stabilizing after week 60. OC and dp closely paralleled IGF-I coinciding with the period of enhanced skeletal growth, remaining thereafter in the low range indicative of reduced bone turnover. E2 increased during reproductive life but the lower values subsequently recorded were still in the physiological range, strongly suggesting a protective role of this steroid on bone remodeling. PTH followed a similar profile to E2, but the significance of this after completion of growth remains unclear. CONCLUSIONS Mechanisms governing skeletal growth in the female rat appear similar to those in humans. Bone progression and attainment of peak bone mass are under simultaneous control of rGH, IGF-I and calciotropic hormones and are modulated by E2. This steroid seems to protect the skeleton from resorption before senescence whereas the role of PTH in this context remains uncertain.
Resumo:
The postnatal development and maturation of the gastrointestinal (GI) tract of neonatal calves is crucial for their survival. Major morphological and functional changes in the calf's GI tract initiated by colostrum bioactive substances promote the establishment of intestinal digestion and absorption of food. It is generally accepted that colostrum intake provokes the maturation of organs and systems in young calves, illustrating the significance of the cow-to-calf connection at birth. These postnatal adaptive changes of the GI tissues in neonatal calves are especially induced by the action of bioactive substances such as insulin-like growth factors, hormones, or cholesterol carriers abundantly present in colostrum. These substances interact with specific cell-surface receptors or receptor-like transporters expressed in the GI wall of neonatal calves to elicit their biological effects. Therefore, the abundance and activity of cell surface receptors and receptor-like transporters binding colostral bioactive substances are a key aspect determining the effects of the cow-to-calf connection at birth. The present review compiles the information describing the effects of colostrum feeding on selected serum metabolic and endocrine traits in neonatal calves. In this context, the current paper discusses specifically the consequences of colostrum feeding on the GI expression and activity of cell-receptors and receptor-like transporters binding growth hormone, insulin-like growth factors, insulin, or cholesterol acceptors in neonatal calves.
Resumo:
The signal transducer and activator of transcription, STAT5b, has been implicated in signal transduction pathways for a number of cytokines and growth factors, including growth hormone (GH). Pulsatile but not continuous GH exposure activates liver STAT5b by tyrosine phosphorylation, leading to dimerization, nuclear translocation, and transcriptional activation of the STAT, which is proposed to play a key role in regulating the sexual dimorphism of liver gene expression induced by pulsatile plasma GH. We have evaluated the importance of STAT5b for the physiological effects of GH pulses using a mouse gene knockout model. STAT5b gene disruption led to a major loss of multiple, sexually differentiated responses associated with the sexually dimorphic pattern of pituitary GH secretion. Male-characteristic body growth rates and male-specific liver gene expression were decreased to wild-type female levels in STAT5b−/− males, while female-predominant liver gene products were increased to a level intermediate between wild-type male and female levels. Although these responses are similar to those observed in GH-deficient Little mice, STAT5b−/− mice are not GH-deficient, suggesting that they may be GH pulse-resistant. Indeed, the dwarfism, elevated plasma GH, low plasma insulin-like growth factor I, and development of obesity seen in STAT5b−/− mice are all characteristics of Laron-type dwarfism, a human GH-resistance disease generally associated with a defective GH receptor. The requirement of STAT5b to maintain sexual dimorphism of body growth rates and liver gene expression suggests that STAT5b may be the major, if not the sole, STAT protein that mediates the sexually dimorphic effects of GH pulses in liver and perhaps other target tissues. STAT5b thus has unique physiological functions for which, surprisingly, the highly homologous STAT5a is unable to substitute.
Resumo:
Fish serum contains several specific binding proteins for insulin-like growth factors (IGFBPs). The structure and physiological function of these fish IGFBPs are unknown. Here we report the complete primary sequence of a zebrafish IGFBP deduced from cDNA clones isolated by library screening and rapid amplification of cDNA ends. The full-length 1,757-bp cDNA encodes a protein of 276 aa, which contains a putative 22-residue signal peptide and a 254-residue mature protein. The mature zebrafish IGFBP has a predicted molecular size of 28,440 Da and shows high sequence identity with human IGFBP-2 (52%). The sequence identities with other human IGFBPs are <37%. Chinese hamster ovary cells stably transfected with the zebrafish IGFBP-2 cDNA secreted a 31-kDa protein, which bound to IGF-I and IGF-II with high affinity, but did not bind to Des(1–3)IGF-I or insulin. Northern blot analyses revealed that the zebrafish IGFBP-2 transcript is a 1.8-kb band expressed in many embryonic and adult tissues. In adult zebrafish, IGFBP-2 mRNA levels were greatly reduced by growth hormone treatment but increased by prolonged fasting. When overexpressed or added to cultured zebrafish and mammalian cells, the zebrafish IGFBP-2 significantly inhibited IGF-I-stimulated cell proliferation and DNA synthesis. These results indicate that zebrafish IGFBP-2 is a negative growth regulator acting downstream in the growth hormone-IGF-I axis.
Resumo:
In the goldfish (Carassius auratus) the two endogenous forms of gonadotropin-releasing hormone (GnRH), namely chicken GnRH II ([His5,Trp7,Tyr8]GnRH) and salmon GnRH ([Trp7,Leu8]GnRH), stimulate the release of both gonadotropins and growth hormone from the pituitary. This control is thought to occur by means of the stimulation of distinct GnRH receptors. These receptors can be distinguished on the basis of differential gonadotropin and growth hormone releasing activities of naturally occurring GnRHs and GnRHs with variant amino acids in position 8. We have cloned the cDNAs of two GnRH receptors, GfA and GfB, from goldfish brain and pituitary. Although the receptors share 71% identity, there are marked differences in their ligand selectivity. Both receptors are expressed in the pituitary but are differentially expressed in the brain, ovary, and liver. Thus we have found and cloned two full-length cDNAs that appear to correspond to different forms of GnRH receptor, with distinct pharmacological characteristics and tissue distribution, in a single species.
Resumo:
After birth, most of insulin-like growth factor I and II (IGFs) circulate as a ternary complex formed by the association of IGF binding protein 3-IGF complexes with a serum protein called acid-labile subunit (ALS). ALS retains the IGF binding protein-3-IGF complexes in the vascular compartment and extends the t1/2 of IGFs in the circulation. Synthesis of ALS occurs mainly in liver after birth and is stimulated by growth hormone. To study the basis for this regulation, we cloned and characterized the mouse ALS gene. Comparison of genomic and cDNA sequences indicated that the gene is composed of two exons separated by a 1126-bp intron. Exon 1 encodes the first 5 amino acids of the signal peptide and contributes the first nucleotide of codon 6. Exon 2 contributes the last 2 nt of codon 6 and encodes the remaining 17 amino acids of the signal peptide as well as the 580 amino acids of the mature protein. The polyadenylylation signal, ATTAAA, is located 241 bp from the termination codon. The cDNA and genomic DNA diverge 16 bp downstream from this signal. Transcription initiation was mapped to 11 sites over a 140-bp TATA-less region. The DNA fragment extending from nt -805 to -11 (ATG, +1) directed basal and growth hormone-regulated expression of a luciferase reporter plasmid in the rat liver cell line H4-II-E. Finally, the ALS gene was mapped to mouse chromosome 17 by fluorescence in situ hybridization.
Resumo:
The nuclear localization of a number of growth factors, cytokine ligands and their receptors has been reported in various cell lines and tissues. These include members of the fibroblast growth factor (FGF), epidermal growth factor and growth hormone families. Accordingly, a number of nuclear functions have begun to emerge for these protein families. The demonstration of functional interactions of these proteins with the nuclear import machinery has further supported their functions as nuclear signal transducers. Here, we review the membrane- trafficking machinery and pathways demonstrated to regulate this cell surface to nucleus-trafficking event and highlight the many remaining unanswered questions. We focus on the FGF family, which is providing many of the clues as to the process of this unusual phenomenon.
Resumo:
Hormone replacement therapy (HRT) has been reported to exert a positive effect on preserving muscle strength following the menopause, however, the mechanism of action remains unclear. We examined whether the mechanism involved preservation of muscle composition as determined by skeletal muscle attenuation. Eighty women aged 50-57 years were randomly assigned to either: HRT, exercise (Ex), HRT + exercise (ExHRT), and control (Co) for 1 year. The study was double-blinded with subjects receiving oestradiol and norethisterone acetate (Kliogest) or placebo. Exercise included progressive high-impact training for the lower limbs. Skeletal muscle attenuation in Hounsfield units (HU) was determined by computed tomography of the mid-thigh. Areas examined were the quadriceps compartment (includes intermuscular adipose tissue), quadriceps muscles, the posterior compartment and posterior muscles. Muscle performance was determined by knee extensor strength, vertical jump height, and running speed over 20 m. Fifty-one women completed the intervention. Vertical jump height and running speed improved in the HRT and ExHRT groups compared with Co (interaction, P < 0.01). For both the quadriceps compartment and quadriceps muscles, HU significantly increased (interaction, P <= 0.005) for HRT, Ex, and ExHRT compared with Co. For the posterior compartment, HU for the HRT and ExHRT were significantly increased compared with Co, while for posterior muscles, ExHRT was significantly greater than Co. Although the effects were modest, the results indicate that HRT, either alone or combined with exercise, may play a role in preserving/improving skeletal muscle attenuation in early postmenopausal women and thereby exert a positive effect on muscle performance.