361 resultados para BFB-boiler
Resumo:
The detention and infiltration ponds of urban drainage system has function to protect the population from undesirable effects of floods. In general these ponds are not completly used and it potential is wasted. As it are disseminated at different places at cities it can reduce costs with water transport and permit water preservation of best quality. Some it utilities includes use in green areas irrigation, industrial among than cooling towers and boiler, soil compaction, cleaning urban road, pisciculture and fire fighting system. The quality these water is influenced by anauthorized sewage in the drainage system. This study was performed in six detention and infiltration ponds at drainage system of Natal, which aim was to verify the non-portable use these ponds on urban environment. As indirect aim would to incentive the water utilization these ponds as a water source to another uses in urban environment. These ponds represents the characteristics of detention and infiltration of Natal city and consequently of Brazil. As the water quality, the ponds presents following characteristics: three has apparently good quality, other showed intermediate condition and two had water polluted. Were performed twenty sample in each ponds and the following parameters assessed: pH, temperature, dissolved oxygen, turbidity, electrical conductivity, coliform thermotolerant, ammonia, organic nitrogen, TKN, nitrate, total phosphorus and alkalinity, bicarbonate, chloride, total hardness, calcium and magnesium hardness, total solids, TSS, TDS, COD and SAR°. To utilization on pisciculture we recommend use in ponds which presents the best quality. Only one pond presented higher pollutants and it not being appropriated for use in cooling tower. The content of solids suspension restricted the water use in all ponds in boilers. As water use in soil compaction, cleaning urban road and fire fighting system the water from these ponds are not appropriated. However, the recommended limits from literature are to domestic sewage, due to this, the parameters are restrictive to diminish the sanitary risk that could be offered with it utilization. The infiltration velocity of water these assessed ponds restrict a moderato use, however the effects are potentiated only in soil less sandy, which not occur in Natal. It is recommend the unrestricted irrigation utilization in ponds with best quality of water, and a restricted irrigation to ponds with worst quality of water. As load of pollutants, it is recommended a complementary treatment in those ponds whit higher load to diminish sanitary risks. In only one pond was found one helminth eggs and due to the convention formula of results, it was found for all ponds less than 1 helminth/liter eggs.
Resumo:
The use of membrane filters in the post-treatment of sewage has been increasingly employed to obtain water quality, applicable to various forms of reuse. Despite the advantages presented using the permeate membranes, such as saving water and reducing water pollution, the concentrate generated in the process ends up being an inconvenience to the deployment of this technology due to lack of sustainable solutions for their management. Thus, the main objective of this research was to evaluate the use of membranes for microfiltration, ultrafiltration, nanofiltration and reverse osmosis concentrated in agriculture, using it as liquid fertilizer. The permeated membranes were also assessed in order to identify activities in which they could be reused. Five configurations were established from four types of membranes, so that each configuration represents a different system. The tests were conducted in batch mode, with triplicate for each configuration. The results indicated that permeated the microfiltration and ultrafiltration can be used in urban areas, in non-potable uses. Have the nanofiltration permeate can be reused in the industry, replacement cooling towers, and other non -potable uses required in the manufacturing unit. The permeate obtained in reverse osmosis met the intended uses for nanofiltration as well as the standards required for boiler feed, adding alkalizing being required to raise the pH to the recommended value. Concentrates generated in nanofiltration and reverse osmosis can be availed as liquid fertilizer in agriculture, but they must be diluted in the irrigation water, in order to adjust the salt concentration allowed for the least tolerant crops patterns
Resumo:
This article presents an thermoeconomic analysis of cogeneration plants, applied as a rational technique to produce electric power and saturated steam. The aim of this new methodology is the minimum exergetic manufacturing cost (EMC), based on the Second Law of Thermodynamics. The decision variables selected for the optimization are the pressure and the temperature of the steam leaving the boiler in the case of using steam turbine, and the pressure ratio, turbine exhaust temperature and mass flow in the case of using gas turbines. The equations for calculating the capital costs of the components and products are formulated as a function of these decision variables. An application of the method using real data of a multinational chemical industry located in São Paulo state is presented. The conditions which establish the minimum cost are presented as finals conclusions.
Resumo:
In this work a detailed thermodynamic analysis for an extraction-condensation steam turbine capable to drive a 40 MVA electricity generator in a sugar-alcohol factory was carried out. The use of this turbine in the cogeneration system showed that its efficiency contributed to increase the power generation, although the condensation reduces the overall efficiency of the plant. Sensibility analyses were performed to evaluate the behavior of the overall energy efficiency of a plant with the extraction-condensation turbine in function of the boiler efficiency, the specific consumption of steam in the processes and the condensation rate in the turbine. It was observed that the plant efficiency is very sensible to the condensation rate variation and it increases when there is an increase in the demand of steam for processes.
Resumo:
This article presents a thermoeconomic analysis of cogeneration plants, applied as a rational technique to produce electric power and saturated steam. The aim of this new methodology is the minimum Exergetic Production Cost (EPC), based on the Second Law of Thermodynamics. The variables selected for the optimization are the pressure and the temperature of the steam leaving the boiler in the case of using steam turbine, and the pressure ratio, turbine exhaust temperature and mass flow in the case of using gas turbines. The equations for calculating the capital costs of the components and products are formulated as a function of these decision variables. An application of the method using real data of a multinational chemical industry located in São Paulo state is presented. The conditions which establish the minimum cost are presented as final output. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a thermoeconomic analysis method based on the First and the Second Law of Thermodynamics and applied to analyse the replacement of an equipment of a cogeneration system is presented. The cogeneration system consists of a gas turbine linked to a waste boiler. The electrical demand of the campus is approximately 9 MW but the cogen system generates approximately one third of the university requirement as well as 1.764 kg/s of saturated steam (at 0.861 MPa), approximately, from a single fuel source. The energy-economic study showed that the best system, based on pay-back period and based on the maximum savings (in 10 years), was the system that used the gas turbine M1T-06 of Kawasaki Heavy Industries and the system that used the gas turbine CCS7 of Hitachi Zosen, respectively. The exergy-economic study showed that the best system, which has the lowest EMC, was the system that used the gas turbine ASE50 of Allied Signal. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
An economical electricity generating system is developed, i.e., a boiler and turbine with a capacity ≤ 100 kw, to occupy a niche market where the existing steam systems are not economically viable. A Tesla turbine is used. It has been modified to provide greater torque, outperforming the deficiency inherent in the original Tesla turbine. It can operate with saturated steam produced by a boiler heated by biomass, gas, biodiesel, etc. The microgenerator consumes locally available fuel and can bring energy to millions of rural living Brazilians, where some kind of biomass is abundant. The Tesla turbine is compact, has no moving parts, and has endless application possibilities. A prototype system is also created to produce electricity with a boiler and generator.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEB