993 resultados para BACTERIAL COMMUNITY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lagoon of Venice is a large water basin that exchanges water with the Northern Adriatic Sea through three large inlets. We examined two adjacent sites within the Southern Basin and at the Chioggia inlet in autumn 2007 and summer 2008. A pilot study in June 2007 on a surface water sample from Chioggia with a rather high salinity of 36.9 PSU had revealed a conspicuous bloom of CF319a-positive cells likely affiliated with the Cytophaga /Flavobacteria cluster of Bacteroidetes. These flavobacterial abundances were one to two orders of magnitude higher than in other marine surface waters. DAPI-stained cells were identified as bacteria with the general bacterial probe mixture EUB338 I-III. CARD-FISH counts with group-specific probes confirmed the dominance of Bacteroidetes (CF319a), Alphaproteobacteria (ALF968), and Gammaproteobacteria (GAM42a). CARD-FISH showed thatBetaproteobacteria and Planctomycetes were minor components of the bacterioplankton in the Lagoon of Venice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microbial oxidation of methane controls the emission of the greenhouse gas methane from the ocean floor. However, some seabed structures such as mud volcanoes have leaky microbial methane filters and can be important sources of methane. We investigated the disturbance and recovery of a methanotrophic mud volcano microbiome (Håkon Mosby mud volcano, 1250 m water depth), to assess time scales of community succession and function in the natural deep-sea environment. We analyzed 10 surface and 5 subsurface sediment samples across HMMV mud flows from most recently discharged subsurface muds towards old consolidated muds as well as one reference site (REF) located approximately 0.5 km outside of the HMMV. Surface samples were obtained in 2003, 2009 and 2010. The surface of the new mud flows at the geographical center was sampled in 2009 and 2010. Around 100 m south of the center, we sampled more consolidated aged muds in 2003 and 2010. Old mud flows were sampled around 300 m southeast and 100 m north of the geographical center in 2003, 2009 and 2010. Surface sediment samples (0-20 cm) were recovered either by TV-guided Multicorer or by push cores using the remotely operated vehicle Quest (Marum, University Bremen). Subsurface sediments of all zones (>2 m below sea floor) were obtained in 2003 by gravity corer. After recovery, sediments were immediately subsampled in a refrigerated container (0°C) and further processed for biogeochemical analyses or preserved at -20°C for later DNA analyses. Our study show that freshly erupted muds hosted heterotrophic deep subsurface communities, which were replaced by surface communities within a few years of exposure. Aerobic methanotrophy was established at the top surface layer within less than a year, followed by anaerobic methanotrophy, sulfate reduction and finally thiotrophy. Our data indicate that it takes decades in cold environments before efficient methanotrophic communities establish to control methane emission. The observed succession provides insights to the response time of complex deep-sea communities to seafloor disturbances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA extraction was carried out as described on the MICROBIS project pages (http://icomm.mbl.edu/microbis ) using a commercially available extraction kit. We amplified the hypervariable regions V4-V6 of archaeal and bacterial 16S rRNA genes using PCR and several sets of forward and reverse primers (http://vamps.mbl.edu/resources/primers.php). Massively parallel tag sequencing of the PCR products was carried out on a 454 Life Sciences GS FLX sequencer at Marine Biological Laboratory, Woods Hole, MA, following the same experimental conditions for all samples. Sequence reads were submitted to a rigorous quality control procedure based on mothur v30 (doi:10.1128/AEM.01541-09) including denoising of the flow grams using an algorithm based on PyroNoise (doi:10.1038/nmeth.1361), removal of PCR errors and a chimera check using uchime (doi:10.1093/bioinformatics/btr381). The reads were taxonomically assigned according to the SILVA taxonomy (SSURef v119, 07-2014; doi:10.1093/nar/gks1219) implemented in mothur and clustered at 98% ribosomal RNA gene V4-V6 sequence identity. V4-V6 amplicon sequence abundance tables were standardized to account for unequal sampling effort using 1000 (Archaea) and 2300 (Bacteria) randomly chosen sequences without replacement using mothur and then used to calculate inverse Simpson diversity indices and Chao1 richness (doi:10.2307/4615964). Bray-Curtis dissimilarities (doi:10.2307/1942268) between all samples were calculated and used for 2-dimensional non metric multidimensional scaling (NMDS) ordinations with 20 random starts (doi:10.1007/BF02289694). Stress values below 0.2 indicated that the multidimensional dataset was well represented by the 2D ordination. NMDS ordinations were compared and tested using Procrustes correlation analysis (doi:10.1007/BF02291478). All analyses were carried out with the R statistical environment and the packages vegan (available at: http://cran.r-project.org/package=vegan), labdsv (available at: http://cran.r-project.org/package=labdsv), as well as with custom R scripts. Operational taxonomic units at 98% sequence identity (OTU0.03) that occurred only once in the whole dataset were termed absolute single sequence OTUs (SSOabs; doi:10.1038/ismej.2011.132). OTU0.03 sequences that occurred only once in at least one sample, but may occur more often in other samples were termed relative single sequence OTUs (SSOrel). SSOrel are particularly interesting for community ecology, since they comprise rare organisms that might become abundant when conditions change.16S rRNA amplicons and metagenomic reads have been stored in the sequence read archive under SRA project accession number SRP042162.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial biofilms provide cues for the settlement of marine invertebrates such as coral larvae, and are therefore important for the resilience and recovery of coral reefs. This study aimed to better understand how ocean acidification may affect the community composition and diversity of bacterial biofilms on surfaces under naturally reduced pH conditions. Settlement tiles were deployed at coral reefs in Papua New Guinea along pH gradients created by two CO2 seeps, and upper and lower tiles surfaces were sampled 5 and 13 months after deployment. Automated Ribosomal Intergenic Spacer Analysis were used to characterize more than 200 separate bacterial communities, complemented by amplicon sequencing of the bacterial 16S rRNA gene of 16 samples. The bacterial biofilm consisted predominantly of Alpha-, Gamma- and Deltaproteobacteria, as well as Cyanobacteria, Flavobacteriia and Cytophaga, whereas putative settlement-inducing taxa only accounted for a small fraction of the community. Bacterial biofilm composition was heterogeneous with approximately 25% shared operational taxonomic units between samples. Among the observed environmental parameters, pH only had a weak effect on community composition (R² ~ 1%) and did not affect community richness and evenness. In contrast, there were strong differences between upper and lower surfaces (contrasting in light exposure and grazing intensity). There also appeared to be a strong interaction between bacterial biofilm composition and the macroscopic components of the tile community. Our results suggest that on mature settlement surfaces in situ, pH does not have a strong impact on the composition of bacterial biofilms. Other abiotic and biotic factors such as light exposure and interactions with other organisms may be more important in shaping bacterial biofilms than changes in seawater pH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gullfaks is one of the four major Norwegian oil and gas fields, located in the northeastern edge of the North Sea Plateau. Tommeliten lies in the greater Ekofisk area in the central North Sea. During the cruises HE 208 and AL 267 several seep locations of the North Sea were visited. At the Heincke seep at Gullfaks, sediments were sampled in May 2004 (HE 208) using a video-guided multiple corer system (MUC; Octopus, Kiel). The samples were recovered from an area densely covered with bacterial mats where gas ebullition was observed. The coarse sands limited MUC penetration depth to maximal 30 centimeters and the highly permeable sands did not allow for a high-resolution, vertical subsampling because of pore water loss. The gas flare mapping and videographic observation at Tommeliten indicated an area of gas emission with a few small patches of bacterial mats with diameters <50 cm from most of which a single stream of gas bubbles emerged. The patches were spaced apart by 10-100 m. Sampling of sediments covered by bacterial mats was only possible with 3 small push cores (3.8 cm diameter) mounted to ROV Cherokee. These cores were sampled in 3 cm intervals. Lipid biomarker extraction from 10 -17 g wet sediment was carried out as described in detail elsewhere (Elvert et al., 2003; doi:10.1080/01490450303894). Briefly, defined concentrations of cholestane, nonadecanol and nonadecanolic acid with known delta 13C-values were added to the sediments prior to extraction as internal standards for the hydrocarbon, alcohol and fatty acid fraction, respectively. Total lipid extracts were obtained from the sediment by ultrasonification with organic solvents of decreasing polarity. Esterified fatty acids (FAs) were cleaved from the glycerol head group by saponification with methanolic KOH solution. From this mixture, the neutral fraction was extracted with hexane. After subsequent acidification, FAs were extracted with hexane. For analysis, FAs were methylated using BF3 in methanol yielding fatty acid methyl esters (FAMES). The fixation for total cell counts and CARD-FISH were performed on-board directly after sampling. For both methods, sediments were fixed in formaldehyde solution. After two hours, aliquots for CARD-FISH staining were washed with 1* PBS (10mmol/l sodium phosphate solution, 130mmol/l NaCl, adjusted to a pH of 7.2) and finally stored in a 1:1 PBS:ethanol solution at -20°C until further processing. Samples for total cell counts were stored in formalin at 4°C until analysis. For sandy samples, the total cell count/CARD-FISH protocol was optimized to separate sand particles from the cells. Cells were dislodged from sediment grains and brought into solution with the supernatant by sonicating each sample onice for 2 minutes at 50W. This procedure was repeated four times and supernatants were combined. The sediment samples were brought to a final dilution of 1:2000 to 1:4000 and filtered onto 0.2µm GTTP filters (Millipore, Eschbonn, Germany).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since marine phytoplankton play a vital role in stabilizing earth's climate by removing significant amount of atmospheric CO2, their responses to increasing CO2 levels are indeed vital to address. The responses of a natural phytoplankton community from the Qingdao coast (NW Yellow Sea, China) was studied under different CO2 levels in microcosms. HPLC pigment analysis revealed the presence of diatoms as a dominant microalgal group; however, members of chlorophytes, prasinophytes, cryptophytes and cyanophytes were also present. delta 13CPOM values indicated that the phytoplankton community probably utilized bicarbonate ions as dissolved inorganic carbon source through a carbon concentration mechanism (CCM) under low CO2 levels, and diffusive CO2 uptake increased upon the increase of external CO2 levels. Although, considerable increase in phytoplankton biomass was noticed in all CO2 treatments, CO2-induced effects were absent. Higher net nitrogen uptake under low CO2 levels could be related to the synthesis of CCM components. Flow cytometry analysis showed slight reduction in the abundance of Synechococcus and pico-eukaryotes under the high CO2 treatments. Diatoms did not show any negative impact in response to increasing CO2 levels; however, chlorophytes revealed a reverse tend. Heterotrophic bacterial count enhanced with increasing CO2 levels and indicated higher abundance of labile organic carbon. Thus, the present study indicates that any change in dissolved CO2 concentrations in this area may affect phytoplankton physiology and community structure and needs further long-term study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microbial community structure in natural environments has remained largely unexplored yet is generally considered to be complex. It is shown here that in a Mid-Atlantic Ridge hydrothermal vent habitat, where food webs depend on prokaryotic primary production, the surface microbial community consists largely of only one bacterial phylogenetic type (phylotype) as indicated by the dominance of a single 16S rRNA sequence. The main part of its population occurs as an ectosymbiont on the dominant animals, the shrimp Rimicaris exoculata, where it grows as a monoculture within the carapace and on the extremities. However, the same bacteria are also the major microbial component of the free-living substrate community. Phylogenetically, this type forms a distinct branch within the epsilon-Proteobacteria. This is different from all previously studied chemoautotrophic endo- and ectosymbioses from hydrothermal vents and other sulfidic habitats in which all the bacterial members cluster within the gamma-Proteobacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial carbon demand, an important component of ecosystem dynamics in polar waters and sea ice, is a function of both bacterial production (BP) and respiration (BR). BP has been found to be generally higher in sea ice than underlying waters, but rates of BR and bacterial growth efficiency (BGE) are poorly characterized in sea ice. Using melted ice core incubations, community respiration (CR), BP, and bacterial abundance (BA) were studied in sea ice and at the ice-water interface (IWI) in the Western Canadian Arctic during the spring and summer 2008. CR was converted to BR empirically. BP increased over the season and was on average 22 times higher in sea ice as compared with the IWI. Rates in ice samples were highly variable ranging from 0.2 to 18.3 µg C/l/d. BR was also higher in ice and on average ~10 times higher than BP but was less variable ranging from 2.39 to 22.5 µg C/l/d. Given the high variability in BP and the relatively more stable rates of BR, BP was the main driver of estimated BGE (r**2 = 0.97, P < 0.0001). We conclude that microbial respiration can consume a significant proportion of primary production in sea ice and may play an important role in biogenic CO2 fluxes between the sea ice and atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reductive dechlorination (RD) of tetrachloroethene (PCE) to vinyl chloride (VC) and, to a lesser extent, to ethene (ETH) by an anaerobic microbial community has been investigated by studying the processes and kinetics of the main physiological components of the consortium. Molecular hydrogen, produced by methanol-utilizing acetogens, was the electron donor for the PCE RD to VC and ETH without forming any appreciable amount of other chlorinated intermediates and in the near absence of methanogenic activity. The microbial community structure of the consortium was investigated by preparing a 1 6S rDNA clone library and by fluorescence in situ hybridization (FISH). The PCR primers used in the clone library allowed the harvest of 16SrDNA from both bacterial and archaeal members in the community. A total of 616 clones were screened by RFLP analysis of the clone inserts followed by the sequencing of RFLP group representatives and phylogenetic analysis. The clone library contained sequences mostly from hitherto undescribed bacteria. No sequences similar to those of the known RD bacteria like 'Dehalococcoides ethenogenes' or Dehalobacter restrictus were found in the clone library, and none of these bacteria was present in the RD consortium according to FISH. Almost all clones fell into six previously described phyla of the bacterial domain, with the majority (56(.)6%) being deep-branching members of the Spirochaetes phylum. Other clones were in the Firmicutes phylum (18(.)5%), the Chloroflexi phylum (16(.)4%), the Bacteroidetes phylum (6(.)3%), the Synergistes genus (11(.)1%) and a lineage that could not be affiliated with existing phyla (11(.)1%). No archaeal clones were found in the clone library. Owing to the phylogenetic novelty of the microbial community with regard to previously cultured microorganisms, no specific microbial component(s) could be hypothetically affiliated with the RD phenotype. The predominance of Spirochaetes in the microbial consortium, the main group revealed by clone library analysis, was confirmed by FISH using a purposely developed probe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A denitrifying microbial consortium was enriched in an anoxically operated, methanol-fed sequencing batch reactor (SBR) fed with a mineral salts medium containing methanol as the sole carbon source and nitrate as the electron acceptor. The SBR was inoculated with sludge from a biological nutrient removal activated sludge plant exhibiting good denitrification. The SBR denitrification rate improved from less than 0.02 mg of NO3-.N mg of mixed-liquor volatile suspended solids (MLVSS)(-1) h(-1) to a steady-state value of 0.06 mg of NO3-.N mg of MLVSS-1 h(-1) over a 7-month operational period. At this time, the enriched microbial community was subjected to stable-isotope probing (SIP) with [C-13] methanol to biomark the DNA of the denitrifiers. The extracted [C-13]DNA and [C-12]DNA from the SIP experiment were separately subjected to full-cycle rRNA analysis. The dominant 16S rRNA gene phylotype (group A clones) in the [C-13]DNA clone library was closely related to those of the obligate methylotrophs Methylobacillus and Methylophilus in the order Methylophilales of the Betaproteobacteria (96 to 97% sequence identities), while the most abundant clone groups in the [C-12]DNA clone library mostly belonged to the family Saprospiraceae in the Bacteroidetes phylum. Oligonucleotide probes for use in fluorescence in situ hybridization (FISH) were designed to specifically target the group A clones and Methylophilales (probes DEN67 and MET1216, respectively) and the Saprospiraceae clones (probe SAP553). Application of these probes to the SBR biomass over the enrichment period demonstrated a strong correlation between the level of SBR denitrification and relative abundance of DEN67-targeted bacteria in the SBR community. By contrast, there was no correlation between the denitrification rate and the relative abundances of the well-known denitrifying genera Hyphomicrobium and Paracoccus or the Saprospiraceae clones visualized by FISH in the SBR biomass. FISH combined with microautoradiography independently confirmed that the DEN67-targeted cells were the dominant bacterial group capable of anoxic [C-14] methanol uptake in the enriched biomass. The well-known denitrification lag period in the methanol-fed SBR was shown to coincide with a lag phase in growth of the DEN67-targeted denitrifying population. We conclude that Methylophilales bacteria are the dominant denitrifiers in our SBR system and likely are important denitrifiers in full-scale methanol-fed denitrifying sludges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To describe empiric community-acquired pneumonia (CAP) management in Australian hospital emergency departments (EDs) and evaluate this against national guidelines, including use of the pneumonia severity index and antibiotic selection. Design: A multicentre, cross-sectional, retrospective audit, April 2003 to February 2005. Setting: 37 Australian hospitals: 22 principal referral hospitals, six large major city hospitals, four large regional hospitals, four medium hospitals and one private hospital. Participants: Adult patients with a diagnosis of CAP made in the ED. Data on 20 consecutive CAP ED presentations were collected in participating hospitals. Outcome measures: Documented use of the pneumonia severity index, initial antibiotic therapy prescribed in the ED, average length of stay, inpatient mortality, and concordance with national guidelines. Results: 691 CAP presentations were included. Pneumonia severity index use was documented in 5% of cases. Antibiotic therapy covering common bacterial causes of CAP was prescribed in 67% of presentations, although overall concordance with national guidelines was 18%. Antibiotic prescribing was discordant due to inadequate empiric antimicrobial cover, allergy status (including contraindication to penicillin), inappropriate route of administration and/or inappropriate antibiotic choice according to recommendations. There was no significant difference between concordant and discordant antibiotic prescribing episodes in average length of stay (5.0 v 5.7 days; P=0.22) or inpatient mortality (1.6% v 4.1%; chi(2) = 1.82; P=0.18). Conclusions: Antibiotic therapy for CAP prescribed in Australian EDs varied. Concordance with national CAP guidelines was generally low. Targeted interventions are required to improve concordance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The acetate-utilizing microbial consortium in a full-scale activated sludge process was investigated without prior enrichment using stable isotope probing (SIP). [C-13]acetate was used in SIP to label the DNA of the denitrifiers. The [C-13]DNA fraction that was extracted was subjected to a full-cycle rRNA analysis. The dominant 16S rRNA gene phylotypes in the C-13 library were closely related to the bacterial families Comamonadaceae and Rhodocyclaceae in the class Betaproteobacteria. Seven oligonucleotide probes for use in fluorescent in situ hybridization (FISH) were designed to specifically target these clones. Application of these probes to the sludge of a continuously fed denitrifying sequencing batch reactor (CFDSBR) operated for 16 days revealed that there was a significant positive correlation between the CFDSBR denitrification rate and the relative abundance of all probe-targeted bacteria in the CFDSBR community. FISH-microautoradiography demonstrated that the DEN581 and DEN124 probe-targeted cells that dominated the CFDSBR were capable of taking Up [C-14] acetate under anoxic conditions. Initially, DEN444 and DEN1454 probe-targeted bacteria also dominated the CFDSBR biomass, but eventually DEN581 and DEN124 probe-targeted bacteria were the dominant bacterial groups. All probe-targeted bacteria assessed in this study were denitrifiers capable of utilizing acetate as a source of carbon. The rapid increase in the number of organisms positively correlated with the immediate increase in denitrification rates observed by plant operators when acetate is used as an external source of carbon to enhance denitrification. We suggest that the impact of bacteria on activated sludge subjected to intermittent acetate supplementation should be assessed prior to the widespread use of acetate in the waste-water industry to enhance denitrification.