913 resultados para Averaging principle
Resumo:
A manifestly covariant treatment of the free quantum eletromagnetic field, in a linear covariant gauge, is implemented employing Schwinger's variational principle and the B-field formalism. It is also discussed the Abelian Proca model as an example of a system without constraints. © Società Italiana di Fisica.
Resumo:
It is commonly assumed that the equivalence principle can coexist without conflict with quantum mechanics. We shall argue here that, contrary to popular belief, this principle does not hold in quantum mechanics. We illustrate this point by computing the second-order correction for the scattering of a massive scalar boson by a weak gravitational field, treated as an external field. The resulting cross-section turns out to be mass-dependent. A way out of this dilemma would be, perhaps, to consider gravitation without the equivalence principle. At first sight, this seems to be a too much drastic attitude toward general relativity. Fortunately, the teleparallel version of general relativity - a description of the gravitational interaction by a force similar to the Lorentz force of electromagnetism and that, of course, dispenses with the equivalence principle - is equivalent to general relativity, thus providing a consistent theory for gravitation in the absence of the aforementioned principle. © World Scientific Publishing Company.
Resumo:
We consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems.
Resumo:
As far as external gravitational fields described by Newton's theory are concerned, theory shows that there is an unavoidable conflict between the universality of free fall (Galileo's equivalence principle) and quantum mechanics - a result confirmed by experiment. Is this conflict due perhaps to the use of Newton's gravity, instead of general relativity, in the analysis of the external gravitational field? The response is negative. To show this we compute the low corrections to the cross-section for the scattering of different quantum particles by an external gravitational field, treated as an external field, in the framework of Einstein's linearized gravity. To first order the cross-sections are spin-dependent; if the calculations are pushed to the next order they become dependent upon energy as well. Therefore, the Galileo's equivalence and, consequently, the classical equivalence principle, is violated in both cases. We address these issues here.
Resumo:
We consider an infinite horizon optimal impulsive control problems for which a given cost function is minimized by choosing control strategies driving the state to a point in a given closed set C ∞. We present necessary conditions of optimality in the form of a maximum principle for which the boundary condition of the adjoint variable is such that non-degeneracy due to the fact that the time horizon is infinite is ensured. These conditions are given for conventional systems in a first instance and then for impulsive control problems. They are proved by considering a family of approximating auxiliary interval conventional (without impulses) optimal control problems defined on an increasing sequence of finite time intervals. As far as we know, results of this kind have not been derived previously. © 2010 IFAC.
Resumo:
This paper presents a new methodology for solving the optimal VAr planning problem in multi-area electric power systems, using the Dantzig-Wolfe decomposition. The original multi-area problem is decomposed into subproblems (one for each area) and a master problem (coordinator). The solution of the VAr planning problem in each area is based on the application of successive linear programming, and the coordination scheme is based on the reactive power marginal costs in the border bus. The aim of the model is to provide coordinated mechanisms to carry out the VAr planning studies maximizing autonomy and confidentiality for each area, assuring global economy to the whole system. Using the mathematical model and computational implementation of the proposed methodology, numerical results are presented for two interconnected systems, each of them composed of three equal subsystems formed by IEEE30 and IEEE118 test systems. © 2011 IEEE.
Resumo:
This article presents and discusses a maximum principle for infinite horizon constrained optimal control problems with a cost functional depending on the state at the final time. The main feature of these optimality conditions is that, under reasonably weak assumptions, the multiplier is shown to satisfy a novel transversality condition at infinite time. It is also shown that these conditions can also be obtained for impulsive control problems whose dynamics are given by measure driven differential equations. © 2011 IFAC.
Resumo:
In this paper, for the first time, a quenching result in a non-ideal system is rigorously obtained. In order to do this a new mechanical hypothesis is assumed, it means that the moment of inertia of the rotating parts of the energy source is big. From this is possible to use the Averaging Method. © 2012 American Institute of Physics.
Resumo:
This article presents a new method to detect damage in structures based on the electromechanical impedance principle. The system follows the variations in the output voltage of piezoelectric transducers and does not compute the impedance itself. The proposed system is portable, autonomous, versatile, and could efficiently replace commercial instruments in different structural health monitoring applications. The identification of damage is performed by simply comparing the variations of root mean square voltage from response signals of piezoelectric transducers, such as lead zirconate titanate patches bonded to the structure, obtained for different frequencies of the excitation signal. The proposed system is not limited by the sampling rate of analog-to-digital converters, dispenses Fourier transform algorithms, and does not require a computer for processing, operating autonomously. A low-cost prototype based on microcontroller and digital synthesizer was built, and experiments were carried out on an aluminum structure and excellent results have been obtained. © The Author(s) 2012.
Resumo:
This study aimed to analyze the electromyographic (EMG) activity of iliocostalis lumborum (IL), internal oblique (IO) and multifidus (MU) and the antagonist cocontraction (IO/MU and IO/IL) during the performance of Centering Principle of Pilates Method. Participating in this study were eighteen young and physically fit volunteers, without experience in Pilates Method, divided in two groups: low back pain group (LBPG, n = 8) and control group (CG, n = 10). Two isometric contractions of IO muscles (Centering Principle) were performed in upright sitting posture. EMG signal amplitude was calculated by Root Mean Square (RMS), which was normalized by RMS maximum value. The common area method to calculate the antagonist cocontraction index was used. MU and IO activation and IO/MU cocontraction (. p < 0.05) were higher in CG. The CG therefore showed a higher stabilizer muscles recruitment than LBPG during the performance of Centering Principle of Pilates Method. © 2012 Elsevier Ltd.
Resumo:
Ticks are hematophagous ectoparasites which can transmit several diseases to the host during their feeding process. When ticks mechanically damage the tissue, they eventually induce inflammatory responses on the skin spot where they are fixed. One of the alternatives to control these ectoparasites is the use of chemical substances like selamectin - the active principle of Pfizer's antiparasitic Revolution® - a macrocyclic lactone capable of doing neurotoxic damage to the tick and eventually eliminating infestation in dogs and cats. The purpose of this study was to analyze, using histological and histochemical techniques, the occurrence of morphophysiological alterations in the skin of the host rabbits exposed to selamectin and infested with Rhipicephalus sanguineus (Acari: Ixodidae). Histologically, the exposed and infested rabbits showed a partial and/or total decrease in the stratum corneum and the epithelium decreased in the number of cell layers, consequently reducing the stratification (thinning) and quite pronounced formations of sub-epidermal edemas with consequent disorganization of collagen fibers in the dermal layer's connective tissue. Histochemical tests showed strong periodic acid-Schiff-positive reaction in the hair follicle and some regions of the dermis, besides resynthesis of collagen fibers detected by Mallory's trichrome technique. The obtained results showed that selamectin acts like a toxicant agent when in contact with the skin of the rabbit infested with ticks, inducing morphophysiological alterations in the acute inflammatory process in the animal's tegument. Selamectin is a chemical substance which has a dose-dependent action since higher concentrations cause greater morphophysiological damage in the skin of rabbits. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
This paper presents a novel time domain approach for Structural Health Monitoring (SHM) systems based on Electromechanical Impedance (EMI) principle and Principal Component Coefficients (PCC), also known as loadings. Differently of typical applications of EMI applied to SHM, which are based on computing the Frequency Response Function (FRF), in this work the procedure is based on the EMI principle but all analysis is conducted directly in time-domain. For this, the PCC are computed from the time response of PZT (Lead Zirconate Titanate) transducers bonded to the monitored structure, which act as actuator and sensor at the same time. The procedure is carried out exciting the PZT transducers using a wide band chirp signal and getting their time responses. The PCC are obtained in both healthy and damaged conditions and used to compute statistics indexes. Tests were carried out on an aircraft aluminum plate and the results have demonstrated the effectiveness of the proposed method making it an excellent approach for SHM applications. Finally, the results using EMI signals in both frequency and time responses are obtained and compared. © The Society for Experimental Mechanics 2014.
Resumo:
Revisa brevemente la teoría que hay detrás de las dos interpretaciones del principio contaminador-pagador, para comentar las implicaciones de éstas en la política ambiental, y considerar en qué medida este principio es aplicado en la práctica.
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía