948 resultados para Atividade de enzimas pancreáticas
Resumo:
One Kunitz-type trypsin inhibitors (PmTI) was purified from Piptadenia moniliformis seeds, a tree of the sub-family Mimosoideae, by TCA precipitation, affinity chromatography on immobilized trypsin-Sepharose, DEAE cellulose (ion exchange) and Superose 12 (molecular exclusion) column FPLC/AKTA. The inhibitor has Mr of 25 kDa by SDS-PAGE and chromatography molecular exclusion. The N-terminal sequence of this inhibitor showed high homology with other family Kunitz inhibitors. This also stable variations in temperature and pH and showed a small decrease in its activity when incubated with DDT in the concentration of 100mM for 120 minutes. The inhibition of trypsin by PmTI was competitive, with Ki of 1.57 x10-11 M. The activity of trypsin was effectively inhibited by percentage of inhibition of 100%, among enzymes tested, was not detected inhibition for the bromelain, was weak inhibitor of pancreatic elastase (3.17% of inhibition) and inhibited by 76.42% elastase of neutrophils, and inhibited in a moderate, chymotrypsin and papain with percentage of inhibition of 42.96% and 23.10% respectively. In vitro assays against digestive proteinases from Lepidoptera, Diptera and Coleoptera pests were carried out. Several degrees of inhibition were found. For Anthonomus grandis and Ceratitis capitata the inhibition was 89.93% and 70.52%, respectively, and the enzymes of Zabrotes subfasciatus and Callosobruchus maculatus were inhibited by 5.96% and 9.41%, respectively, and the enzymes of Plodia. interpunctella and Castnia licus were inhibited by 59.94% and 23.67, respectively. In vivo assays, was observed reduction in the development of larvae in 4rd instar of C. capitata, when PmTI was added to the artificial diet, getting WD50 and LD50 of 0.30% and 0.33%, respectively. These results suggest that this inhibitor could be a strong candidate to plant management programs cross transgenic
Resumo:
Plodia interpunctella (Indian meal moth) is a cosmopolitan pest that attacks not only a wide range of stored grain as well other food products. Due to its economic importance several researches have focused in a method with ability to control this pest with few or no damage to the environment. The study of digestive enzymes inhibitors, lectins and chitin-binding proteins, has often been proposed as an alternative to reduce insect damage. In this study we report the major classes of digestive enzymes during larval growth in P. Interpunctella, being those proteinases actives at pH 9.5 and optimum temperature of 50 oC to both larvae of the 3rd instar and pre-pupal stage of development. In vitro and zymogram assays presented the effects of several inhibitors, such as SBTI, TLCK and PMSF to intestinal homogenate of 3rd instar larvae of 62%, 92% and 87% of inhibition and In pre-pupal stage of 87%, 62 % and 55% of inhibition, respectively. Zymograms showed inhibition of two low molecular masses protein bands by TLCK and that in presence of SBTI were retarded. These results are indicative of predominance of digestive serine proteinases in gut homogenate from Plodia interpunctella larvae. This serine proteinase was then used as a target to evaluate the effect of SBTI on larvae in in vivo assay. Effect of SBTI on mortality and larval mass was not observed at until 4% of concentration (w/w) in diets. Chitin, another target to insecticidal proteins, was observed by chemical method. Moreover, optic microscopy confirmed the presence of a peritrophic membrane. Established this target, in vivo effect of EvV, a chitin binding vicilin, evaluated during the larval development of P. interpunctella and was obtained a LD50 of 0,23% and WD50 of 0,27% to this protein. Mechanism of action was proposed through of the in vivo digestibility of EvV methodology. During the passage through the larval digestive tract was observed that EvV was susceptible to digestive enzymes and a reactive fragment, visualized by Western blotting, produced by digestion was recovered after dissociation of the peritrophic membrane. The bound of EvV to peritrophic membrane was confirmed by immunohystochemical assays that showed strong immunofluorescent signal of EvV-FITC binding and peritrophic membrane. These results are a indicative that vicilins could be utilized as potential insecticide to Plodia interpunctella and a control methods using EvV as bioinsecticide should be studied to reduce lost caused by storage insect pests
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A formação de aerênquimas é conhecida como uma das mais importantes adaptações anatômicas pelas quais as plantas passam quando são submetidas à deficiência de oxigênio. Esse tecido se desenvolve pela ação de enzimas de degradação ou afrouxamento da parede celular. Este trabalho foi conduzido com o objetivo de verificar o desenvolvimento de aerênquima em plântulas de milho cv. Saracura- BRS 4154, submetidas à hipoxia. Associou-se, ao desenvolvimento dessa estrutura, a atividade da celulase. Para tanto, plântulas com 4 dias de idade foram submetidas aos tratamentos de hipoxia, pela imersão em tampão de alagamento, na ausência e presença de cálcio. Após 0, 1, 2, 3 e 4 dias da aplicação dos tratamentos, foram feitos cortes anatômicos na região apical dos coleóptiles e na região intermediária da raiz para a avaliação da formação de aerênquimas, e coletado o material para os ensaios enzimáticos de celulase. A atividade celulase foi medida através de método viscosimétrico. Nas raízes, a formação de aerênquima aumentou logo após a hipoxia e atingiu 50% do total do córtex ao quarto dia de hipoxia. Este órgão apresentou uma área cortical com aerênquima em média sete vezes maior que nos coleóptiles, onde a área de espaços intercelulares atingiu 15% do córtex. A atividade da celulase em coleóptiles e raízes sofreu, inicialmente, um decréscimo devido ao estresse, aumentando em seguida, acompanhando os resultados de aerênquima. Na presença de cálcio o desenvolvimento de aerênquima foi inibido; no entanto, a atividade enzimática foi induzida.
Resumo:
Extended storage of refrigerated milk can lead to reduced quality of raw and processed milk, which is a consequence of the growth and metabolic activities of psychrotrophic bacteria, able to grow under 7oC or lower temperatures. Although most of these microorganisms are destroyed by heat treatment, some have the potential to produce termoresistant proteolytic and lipolytic enzymes that can survive even UHT processing and reduce the processed products quality. Recently, the IN 51 determineds that milk should be refrigerated and stored at the farm what increased the importance of this group of microorganisms. In this work, psychrotrophic bacteria were isolated from 20 communitarian bulk tanks and 23 individual bulk tanks from dairy farms located at Zona da Mata region of Minas Gerais State and from southeastern Rio de Janeiro. Selected milk dilutions were plated on standard agar and after incubation for 10 days at 7oC, five colonies were isolated, firstly using nutrient agar and after using McConkey agar for 24 hours at 21oC. The isolates were identified by morphology, Gram stain method, catalase production, fermentative/oxidative metabolism and by API 20E, API 20NE, API Staph, API Coryne or API 50 CH (BioMerieux). In order to ensure reproductibility, API was repeated for 50% of the isolates. Species identification was considered when APILAB indexes reached 75% or higher. 309 strains were isolated, 250 Gram negative and 59 Gram positive. 250 Gram negative isolates were identified as: Acinetobacter spp. (39), Aeromonas spp. (07), A. Hydrophila (16), A. sobria (1), A. caviae (1), Alcaligenes feacalis (1), Burkholderia cepacia (12), Chryseomonas luteola (3), Enterobacter sp. (1), Ewingella americana(6), Hafnia alvei (7), Klebsiella sp. (1), Klebsiella oxytoca (10), Yersinia spp. (2), Methylobacterium mesophilicum (1), Moraxella spp. (4), Pantoea spp. (16), Pasteurella sp. (1), Pseudomonas spp. (10), P. fluorescens (94), P. putida (3), Serratia spp. (3), Sphigomonas paucomobilis (1). Five isolates kept unidentified. Pseudomonas was the predominant bacteria found (43%) and P. fluorescens the predominant species (37.6%), in accordance with previous reports. Qualitative analysis of proteolytic and lipolytic activity was based on halo formation using caseinate agar and tributirina agar during 72 hours at 21oC and during 10 days at 4°C, 10oC and 7°C. Among 250 Gram negative bacteria found, 104 were identified as Pseudomonas spp. and 60,57% of this group showed proteolytic and lipolytic acitivities over all four studied temperatures. 20% of Acinetobacter, Aeromonas, Alcaligenes, Burkholderia, Chryseomonas, Methylobacterium, Moraxella presented only lipolytic activity. Some isolates presented enzymatic activity in one or more studied temperatures. Among Gram positive bacteria, 30.51% were proteolytic and lipolytic at 10oC, 8.47% were proteolytic at 7oC, 10oC, and 21oC, 8.47% were proteolytic at all studied temperatures (4oC, 7oC, 10oC and 21oC) and 3.38% were proteolytic only at 21oC. At 4oC, only one isolate showed proteolytic activity and six isolates were lipolytic. In relation to Gram negative microorganisms, 4% were proteolytic and lipolytic at 7oC, 10oC and 21oC, 10% were proteolytic at 10oC and 4.4% were lipolytic at 4oC, 7oC, 10oC and 21oC, while 6.4% of all isolates were proteolytic and lipolytic at 10oC and 21oC as well as lipolytic at 4oC and 7oC. These findings are in accordance with previous researches that pointed out Pseudomonas as the predominant psycrotrophic flora in stored refrigerated raw milk
Resumo:
Nowadays generation ethanol second, that t is obtained from fermentation of sugars of hydrolyses of cellulose, is gaining attention worldwide as a viable alternative to petroleum mainly for being a renewable resource. The increase of first generation ethanol production i.e. that obtained from sugar-cane molasses could lead to a reduction of lands sustainable for crops and food production. However, second generation ethanol needs technologic pathway for reduce the bottlenecks as production of enzymes to hydrolysis the cellulose to glucose i.e. the cellulases as well as the development of efficient biomass pretreatment and of low-cost. In this work Trichoderma reesei ATCC 2768 was cultivated under submerged fermentation to produce cellulases using as substrates waste of lignocellulosic material such as cashew apple bagasse as well as coconut bagasse with and without pretreatment. For pretreatment the bagasses were treated with 1 M NaOH and by explosion at high pressure. Enzyme production was carried out in shaker (temperature of 27ºC, 150 rpm and initial medium pH of 4.8). Results showed that T.reesei ATCC 2768 showed the higher cellulase production when the cashew apple bagasse was treated with 1M NaOH (2.160 UI/mL of CMCase and 0.215 UI/mL of FPase), in which the conversion of cellulose, in terms of total reducing sugars, was of 98.38%, when compared to pretreatment by explosion at high pressure (0.853 UI/mL of CMCase and 0.172 UI/mL of Fpase) showing a conversion of 47.39% of total reducing sugars. Cellulase production is lower for the medium containing coconut bagasse treated with 1M NaOH (0.480 UI/mL of CMcase and 0.073 UI/mL of FPase), giving a conversion of 49.5% in terms of total reducing sugars. Cashew apple bagasse without pretreatment showed cellulase activities lower (0.535 UI/mL of CMCase and 0,152 UI/mL of FPase) then pretreated bagasse while the coconut bagasse without pretreatment did not show any enzymatic activity. Maximum cell concentration was obtained using cashew nut bagasse as well as coconut shell bagasse treated with 1M NaOH, with 2.92 g/L and 1.97 g/L, respectively. These were higher than for the experiments in which the substrates were treated by explosion at high pressure, 1.93 g/L and 1.17 g/L. Cashew apple is a potential inducer for cellulolytic enzymes synthysis showing better results than coconut bagasse. Pretreatment improves the process for the cellulolytic enzyme production
Resumo:
Uma das principais doenças do maracujazeiro, na maioria dos estados produtores do Brasil, é a podridão do colo, causada por Fusarium solani. Pouco se sabe a respeito da fisiologia deste patógeno do maracujazeiro amarelo, principalmente quanto à produção de enzimas extracelulares. O objetivo do presente trabalho foi verificar, em meios de cultura individuais e apropriados, a produção das enzimas extracelulares amilase, lipase, celulase, proteases (caseinase e gelatinase), lacase (oxidase) e catalase por isolados de F. solani, provenientes de maracujazeiro amarelo. O delineamento experimental adotado foi o inteiramente casualizado, em esquema de dois fatores (nove isolados versus sete enzimas), com três repetições. Todos os isolados de F. solani produziram, de maneira semiquantitativa, as enzimas extracelulares amilase, lipase, celulase, caseinase (protease) e lacase (oxidase). No entanto, a quantidade produzida de cada enzima foi significativamente diferente entre os isolados. As enzimas extracelulares gelatinase (protease) e catalase foram produzidas em pouca quantidade e de maneira igual por todos os isolados do fungo.
Resumo:
The need for new sources of energy and the concern about the environment have pushed the search for renewable energy sources such as ethanol. The use of lignocellulosic biomass as substrate appears as an important alternative because of the abundance of this raw material and for it does not compete with food production. However, the process still meets difficulties of implementation, including the cost for production of enzymes that degrade cellulose to fermentable sugars. The aim of this study was to evaluate the behavior of the species of cactus pear Opuntia ficus indica and Nopalea cochenillifera, commonly found in northeastern Brazil, as raw materials for the production of: 1) cellulosic ethanol by simultaneous saccharification and fermentation (SSF) process, using two different strains of Saccharomyces cerevisiae (PE-2 and LNF CA-11), and 2) cellulolytic enzymes by semi-solid state fermentation (SSSF) using the filamentous fungus Penicillium chrysogenum. Before alcoholic fermentation process, the material was conditioned and pretreated by three different strategies: alkaline hydrogen peroxide, alkaline using NaOH and acid using H2SO4 followed by alkaline delignification with NaOH. Analysis of composition, crystallinity and enzymatic digestibility were carried out with the material before and after pretreatment. In addition, scanning electron microscopy images were used to compare qualitatively the material and observe the effects of pretreatments. An experimental design 2² with triplicate at the central point was used to evaluate the influence of temperature (30, 40 and 45 °C) and the initial charge of substrate (3, 4 and 5% cellulose) in the SSF process using the material obtained through the best condition and testing both strains of S. cerevisiae, one of them flocculent (LNF CA-11). For cellulase production, the filamentous fungus P. chrysogenum was tested with N. cochenillifera in the raw condition (without pretreatment) and pretrated hydrothermically, varying the pH of the fermentative medium (3, 5 and 7). The characterization of cactus pear resulted in 31.55% cellulose, 17.12% hemicellulose and 10.25% lignin for N. cochenillifera and 34.86% cellulose, 19.97% hemicellulose and 15.72% lignin for O. ficus indica. It has also been determined, to N. cochenillifera and O. ficus indica, the content of pectin (5.44% and 5.55% of calcium pectate, respectively), extractives (26.90% and 9.69%, respectively) and ashes (5.40% and 5.95%). Pretreatment using alkaline hydrogen peroxide resulted in the best cellulose recovery results (86.16% for N. cochenillifera and 93.59% for O. ficus indica) and delignification (48.79% and 23.84% for N. cochenillifera and O. ficus indica, respectively). This pretreatment was also the only one which did not increase the crystallinity index of the samples, in the case of O. ficus indica. However, when analyzing the enzymatic digestibility of cellulose, alkali pretreatment was the one which showed the best yields and therefore it was chosen for the tests in SSF. The experiments showed higher yield of conversion of cellulose to ethanol by PE-2 strain using the pretreated N. cochenillifera (93.81%) at 40 °C using 4% initial charge of cellulose. N. cochenillifera gave better yields than O. ficus indica and PE-2 strain showed better performance than CA-11. N. cochenillifera proved to be a substrate that can be used in the SSSF for enzymes production, reaching values of 1.00 U/g of CMCase and 0.85 FPU/g. The pretreatment was not effective to increase the enzymatic activity values
Resumo:
As peroxidases, presentes nos peroxissomos e lisossomos, pertencem às oxidases e atuam como catalítico para o peróxido de hidrogênio (H2O2), posteriormente decomposto pela oxidação de cossubstratos, evitando danos celulares.(¹) Foi aplicada a técnica da peroxidase(2) em esfregaços sanguíneos de Phrynops geoffroanus, comparando com sangue humano, para avaliação da atividade e controle da reação. O esfregaço sanguíneo humano apresentou marcações em neutrófilos, fagócitos com muitos lisossomos e peroxissomos (Figura 1). Nos esfregaços sanguíneos de Phrynops geoffroanus, as marcações apresentaram-se nos basófilos (Figura 2), que representam de 10% a 25% dos leucócitos de quelônios e possuem grande número de granulações citoplasmáticas,(3) sugerindo a presença de grande quantidade de enzimas e organelas como lisossomos e peroxissomos, possivelmente associadas a sua participação em reações imunes. A atividade peroxidásica representa resposta do organismo a ações ambientais danosas, servindo como marcador biológico.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)