971 resultados para Assay Development
Resumo:
Trabajo realizado por: Maldonado, F.; Packard, T.; Gómez, M.; Santana Rodríguez, J. J
Resumo:
Aim of the research: to develop a prototype of homogeneous high-throughput screening (HTS) for identification of novel integrin antagonists for the treatment of ocular allergy and to better understand the mechanisms of action of integrin-mediated levocabastine antiallergic action. Results: This thesis provides evidence that adopting scintillation proximity assay (SPA) levocabastine (IC50=406 mM), but not the first-generation antihistamine chlorpheniramine, displaces [125I]fibronectin (FN) binding to human a4b1 integrin. This result is supported by flow cytometry analysis, where levocabastine antagonizes the binding of a primary antibody to integrin a4 expressed in Jurkat E6.1 cells. Levocabastine, but not chlorpheniramine, binds to a4b1 integrin and prevents eosinophil adhesion to VCAM-1, FN or human umbilical vein endothelial cells (HUVEC) cultured in vitro. Similarly, levocabastine affects aLb2/ICAM-1-mediated adhesion of Jurkat E6.1 cells. Analyzing the supernatant of TNF-a-treated (24h) eosinophilic cells (EoL-1), we report that levocabastine reduces the TNF-a-induced release of the cytokines IL-12p40, IL-8 and VEGF. Finally, in a model of allergic conjunctivitis, levocastine eye drops (0.05%) reduced the clinical aspects of the early and late phase reactions and the conjunctival expression of a4b1 integrin by reducing infiltrated eosinophils. Conclusions: SPA is a highly efficient, amenable to automation and robust binding assay to screen novel integrin antagonists in a HTS setting. We propose that blockade of integrinmediated cell adhesion might be a target of the anti-allergic action of levocabastine and may play a role in preventing eosinophil adhesion and infiltration in allergic conjunctivitis.
Resumo:
The subject of this Ph.D. research thesis is the development and application of multiplexed analytical methods based on bioluminescent whole-cell biosensors. One of the main goals of analytical chemistry is multianalyte testing in which two or more analytes are measured simultaneously in a single assay. The advantages of multianalyte testing are work simplification, high throughput, and reduction in the overall cost per test. The availability of multiplexed portable analytical systems is of particular interest for on-field analysis of clinical, environmental or food samples as well as for the drug discovery process. To allow highly sensitive and selective analysis, these devices should combine biospecific molecular recognition with ultrasensitive detection systems. To address the current need for rapid, highly sensitive and inexpensive devices for obtaining more data from each sample,genetically engineered whole-cell biosensors as biospecific recognition element were combined with ultrasensitive bioluminescence detection techniques. Genetically engineered cell-based sensing systems were obtained by introducing into bacterial, yeast or mammalian cells a vector expressing a reporter protein whose expression is controlled by regulatory proteins and promoter sequences. The regulatory protein is able to recognize the presence of the analyte (e.g., compounds with hormone-like activity, heavy metals…) and to consequently activate the expression of the reporter protein that can be readily measured and directly related to the analyte bioavailable concentration in the sample. Bioluminescence represents the ideal detection principle for miniaturized analytical devices and multiplexed assays thanks to high detectability in small sample volumes allowing an accurate signal localization and quantification. In the first chapter of this dissertation is discussed the obtainment of improved bioluminescent proteins emitting at different wavelenghts, in term of increased thermostability, enhanced emission decay kinetic and spectral resolution. The second chapter is mainly focused on the use of these proteins in the development of whole-cell based assay with improved analytical performance. In particular since the main drawback of whole-cell biosensors is the high variability of their analyte specific response mainly caused by variations in cell viability due to aspecific effects of the sample’s matrix, an additional bioluminescent reporter has been introduced to correct the analytical response thus increasing the robustness of the bioassays. The feasibility of using a combination of two or more bioluminescent proteins for obtaining biosensors with internal signal correction or for the simultaneous detection of multiple analytes has been demonstrated by developing a dual reporter yeast based biosensor for androgenic activity measurement and a triple reporter mammalian cell-based biosensor for the simultaneous monitoring of two CYP450 enzymes activation, involved in cholesterol degradation, with the use of two spectrally resolved intracellular luciferases and a secreted luciferase as a control for cells viability. In the third chapter is presented the development of a portable multianalyte detection system. In order to develop a portable system that can be used also outside the laboratory environment even by non skilled personnel, cells have been immobilized into a new biocompatible and transparent polymeric matrix within a modified clear bottom black 384 -well microtiter plate to obtain a bioluminescent cell array. The cell array was placed in contact with a portable charge-coupled device (CCD) light sensor able to localize and quantify the luminescent signal produced by different bioluminescent whole-cell biosensors. This multiplexed biosensing platform containing whole-cell biosensors was successfully used to measure the overall toxicity of a given sample as well as to obtain dose response curves for heavy metals and to detect hormonal activity in clinical samples (PCT/IB2010/050625: “Portable device based on immobilized cells for the detection of analytes.” Michelini E, Roda A, Dolci LS, Mezzanotte L, Cevenini L , 2010). At the end of the dissertation some future development steps are also discussed in order to develop a point of care (POCT) device that combine portability, minimum sample pre-treatment and highly sensitive multiplexed assays in a short assay time. In this POCT perspective, field-flow fractionation (FFF) techniques, in particular gravitational variant (GrFFF) that exploit the earth gravitational field to structure the separation, have been investigated for cells fractionation, characterization and isolation. Thanks to the simplicity of its equipment, amenable to miniaturization, the GrFFF techniques appears to be particularly suited for its implementation in POCT devices and may be used as pre-analytical integrated module to be applied directly to drive target analytes of raw samples to the modules where biospecifc recognition reactions based on ultrasensitive bioluminescence detection occurs, providing an increase in overall analytical output.
Resumo:
The subject of this thesis is multicolour bioluminescence analysis and how it can provide new tools for drug discovery and development.The mechanism of color tuning in bioluminescent reactions is not fully understood yet but it is object of intense research and several hypothesis have been generated. In the past decade key residues of the active site of the enzyme or in the surface surrounding the active site have been identified as responsible of different color emission. Anyway since bioluminescence reaction is strictly dependent from the interaction between the enzyme and its substrate D-luciferin, modification of the substrate can lead to a different emission spectrum too. In the recent years firefly luciferase and other luciferases underwent mutagenesis in order to obtain mutants with different emission characteristics. Thanks to these new discoveries in the bioluminescence field multicolour luciferases can be nowadays employed in bioanalysis for assay developments and imaging purposes. The use of multicolor bioluminescent enzymes expanded the potential of a range of application in vitro and in vivo. Multiple analysis and more information can be obtained from the same analytical session saving cost and time. This thesis focuses on several application of multicolour bioluminescence for high-throughput screening and in vivo imaging. Multicolor luciferases can be employed as new tools for drug discovery and developments and some examples are provided in the different chapters. New red codon optimized luciferase have been demonstrated to be improved tools for bioluminescence imaging in small animal and the possibility to combine red and green luciferases for BLI has been achieved even if some aspects of the methodology remain challenging and need further improvement. In vivo Bioluminescence imaging has known a rapid progress since its first application no more than 15 years ago. It is becoming an indispensable tool in pharmacological research. At the same time the development of more sensitive and implemented microscopes and low-light imager for a better visualization and quantification of multicolor signals would boost the research and the discoveries in life sciences in general and in drug discovery and development in particular.
Resumo:
The thesis is set in three different parts, according to the relative experimental models. First, the domestic pig (Sus scrofa) is part of the study on reproductive biotechnologies: the transgenesis technique of Sperm Mediated Gene Transfer is widely studied starting from the quality of the semen, through the study of multiple uptakes of exogenous DNA and lastly used in the production of multi-transgenic blastocysts. Finally we managed to couple the transgenesis pipeline with sperm sorting and therefore produced transgenic embryos of predetermined sex. In the second part of the thesis the attention is on the fruit fly (Drosophila melanogaster) and on its derived cell line: the S2 cells. The in vitro and in vivo models are used to develop and validate an efficient way to knock down the myc gene. First an efficient in vitro protocol is described, than we demonstrate how the decrease in myc transcript remarkably affects the ribosome biogenesis through the study of Polysome gradients, rRNA content and qPCR. In vivo we identified two optimal drivers for the conditional silencing of myc, once the flies are fed with RU486: the first one is throughout the whole body (Tubulin), while the second is a head fat body driver (S32). With these results we present a very efficient model to study the role of myc in multiple aspects of translation. In the third and last part, the focus is on human derived lung fibroblasts (hLF-1), mouse tail fibroblasts and mouse tissues. We developed an efficient assay to quantify the total protein content of the nucleus on a single cell level via fluorescence. We coupled the protocol with classical immunofluorescence so to have at the same time general and particular information, demonstrating that during senescence nuclear proteins increase by 1.8 fold either in human cells, mouse cells and mouse tissues.
Resumo:
The increase in aquaculture operations worldwide has provided new opportunities for the transmission of aquatic viruses. The occurrence of viral diseases remains a significant limiting factor in aquaculture production and for the sustainability. The ability to identify quickly the presence/absence of a pathogenic organism in fish would have significant advantages for the aquaculture systems. Several molecular methods have found successful application in fish pathology both for confirmatory diagnosis of overt diseases and for detection of asymptomatic infections. However, a lot of different variants occur among fish host species and virus strains and consequently specific methods need to be developed and optimized for each pathogen and often also for each host species. The first chapter of this PhD thesis presents a complete description of the major viruses that infect fish and provides a relevant information regarding the most common methods and emerging technologies for the molecular diagnosis of viral diseases of fish. The development and application of a real time PCR assay for the detection and quantification of lymphocystivirus was described in the second chapter. It showed to be highly sensitive, specific, reproducible and versatile for the detection and quantitation of lymphocystivirus. The use of this technique can find multiple application such as asymptomatic carrier detection or pathogenesis studies of different LCDV strains. The third chapter, a multiplex RT-PCR (mRT-PCR) assay was developed for the simultaneous detection of viral haemorrhagic septicaemia (VHS), infectious haematopoietic necrosis (IHN), infectious pancreatic necrosis (IPN) and sleeping disease (SD) in a single assay. This method was able to efficiently detect the viral RNA in tissue samples, showing the presence of single infections and co-infections in rainbow trout samples. The mRT-PCR method was revealed to be an accurate and fast method to support traditional diagnostic techniques in the diagnosis of major viral diseases of rainbow trout.
Resumo:
OBJECTIVES: The disease alveolar echinococcosis (AE), caused by the larval stage of the cestode Echinococcus multilocularis, is fatal if treatment is unsuccessful. Current treatment options are, at best, parasitostatic, and involve taking benzimidazoles (albendazole, mebendazole) for the whole of a patient's life. In conjunction with the recent development of optimized procedures for E. multilocularis metacestode cultivation, we aimed to develop a rapid and reliable drug screening test, which enables efficient screening of a large number of compounds in a relatively short time frame. METHODS: Metacestodes were treated in vitro with albendazole, the nitro-thiazole nitazoxanide and 29 nitazoxanide derivatives. The resulting leakage of phosphoglucose isomerase (PGI) activity into the medium supernatant was measured and provided an indication of compound efficacy. RESULTS: We show that upon in vitro culture of E. multilocularis metacestodes in the presence of active drugs such as albendazole, the nitro-thiazole nitazoxanide and 30 different nitazoxanide derivatives, the activity of PGI in culture supernatants increased. The increase in PGI activity correlated with the progressive degeneration and destruction of metacestode tissue in a time- and concentration-dependent manner, which allowed us to perform a structure-activity relationship analysis on the thiazolide compounds used in this study. CONCLUSIONS: The assay presented here is inexpensive, rapid, can be used in 24- and 96-well formats and will serve as an ideal tool for first-round in vitro tests on the efficacy of large numbers of antiparasitic compounds.
Resumo:
OBJECTIVE To investigate the effects of interleukin-17A (IL-17A) on osteoclastogenesis in vitro. METHODS Bone marrow cells (BMCs) were isolated from the excised tibia and femora of wild-type C57BL/6J mice, and osteoblasts were obtained by sequential digestion of the calvariae of ddY, C57BL/6J, and granulocyte-macrophage colony-stimulating factor-knockout (GM-CSF(-/-)) mice. Monocultures of BMCs or cocultures of BMCs and osteoblasts were supplemented with or without 1,25-dihydroxyvitamin D(3)(1,25[OH](2)D(3)), recombinant human macrophage colony-stimulating factor (M-CSF), RANKL, and IL-17A. After 5-6 days, the cultures were fixed with 4% paraformaldehyde and subsequently stained for the osteoclast marker enzyme tartrate-resistant acid phosphatase (TRAP). Osteoprotegerin (OPG) and GM-CSF expression were measured by enzyme-linked immunosorbent assay, and transcripts for RANK and RANKL were detected by real-time polymerase chain reaction. RESULTS In both culture systems, IL-17A alone did not affect the development of osteoclasts. However, the addition of IL-17A plus 1,25(OH)(2)D(3) to cocultures inhibited early osteoclast development within the first 3 days of culture and induced release of GM-CSF into the culture supernatants. Furthermore, in cocultures of GM-CSF(-/-) mouse osteoblasts and wild-type mouse BMCs, IL-17A did not affect osteoclast development, corroborating the role of GM-CSF as the mediator of the observed inhibition of osteoclastogenesis by IL-17A. CONCLUSION These findings suggest that IL-17A interferes with the differentiation of osteoclast precursors by inducing the release of GM-CSF from osteoblasts.
Resumo:
The interaction of immunoglobulin E (IgE) antibodies with the high-affinity receptor, FcεRI, plays a central role in initiating most allergic reactions. The IgE-receptor interaction has been targeted for treatment of allergic diseases, and many high-affinity macromolecular inhibitors have been identified. Small molecule inhibitors would offer significant advantages over current anti-IgE treatment, but no candidate compounds have been identified and fully validated. Here, we report the development of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay for monitoring the IgE-receptor interaction. The TR-FRET assay measures an increase in fluorescence intensity as a donor lanthanide fluorophore is recruited into complexes of site-specific Alexa Fluor 488-labeled IgE-Fc and His-tagged FcεRIα proteins. The assay can readily monitor classic competitive inhibitors that bind either IgE-Fc or FcεRIα in equilibrium competition binding experiments. Furthermore, the TR-FRET assay can also be used to follow the kinetics of IgE-Fc-FcεRIα dissociation and identify inhibitory ligands that accelerate the dissociation of preformed complexes, as demonstrated for an engineered DARPin (designed ankyrin repeat protein) inhibitor. The TR-FRET assay is suitable for high-throughput screening (HTS), as shown by performing a pilot screen of the National Institutes of Health (NIH) Clinical Collection Library in a 384-well plate format.
Resumo:
BACKGROUND: Complete investigation of thrombophilic or hemorrhagic clinical presentations is a time-, apparatus-, and cost-intensive process. Sensitive screening tests for characterizing the overall function of the hemostatic system, or defined parts of it, would be very useful. For this purpose, we are developing an electrochemical biosensor system that allows measurement of thrombin generation in whole blood as well as in plasma. METHODS: The measuring system consists of a single-use electrochemical sensor in the shape of a strip and a measuring unit connected to a personal computer, recording the electrical signal. Blood is added to a specific reagent mixture immobilized in dry form on the strip, including a coagulation activator (e.g., tissue factor or silica) and an electrogenic substrate specific to thrombin. RESULTS: Increasing thrombin concentrations gave standard curves with progressively increasing maximal current and decreasing time to reach the peak. Because the measurement was unaffected by color or turbidity, any type of blood sample could be analyzed: platelet-poor plasma, platelet-rich plasma, and whole blood. The test strips with the predried reagents were stable when stored for several months before testing. Analysis of the combined results obtained with different activators allowed discrimination between defects of the extrinsic, intrinsic, and common coagulation pathways. Activated protein C (APC) predried on the strips allowed identification of APC-resistance in plasma and whole blood samples. CONCLUSIONS: The biosensor system provides a new method for assessing thrombin generation in plasma or whole blood samples as small as 10 microL. The assay is easy to use, thus allowing it to be performed in a point-of-care setting.
Resumo:
In order to improve the diagnosis of enzootic pneumonia (EP) in pigs two real-time polymerase chain reaction (rtPCR) assays for the detection of Mycoplasma hyopneumoniae in bronchial swabs from lung necropsies were established and validated in parallel. As a gold standard, the current "mosaic diagnosis" was taken, including epidemiological tracing, clinical signs, macro- and histopathological lesions of the lungs and immunofluorescence. One rtPCR is targeting a repeated DNA element of the M. hyopneumoniae genome (REP assay), the other a putative ABC transporter gene (ABC assay). Both assays were shown to be specific for M. hyopneumoniae and did not cross react with other bacteria and mollicutes from pig. With material from pigs of defined EP-negative farms the two assays showed to be 100% specific. When testing lungs from pig farms with EP, the REP assay detected 50% and the ABC assay 90% of the farms as positive. Both tests together detected all positive farms. Within a positive herd the two assays tested similarly with on average over 90% of the lung samples analysed from a single farm showing positive scores. A series of samples with suspicion of EP and samples from pigs with diseases other than respiratory taken from current routine diagnostic was assayed. None of the assays showed false positive results. The sensitivities in this sample group were 50% for the REP and 70% for the ABC assays and for both assays together 85%. The two assays run in parallel are therefore a valuable tool for the improvement of the current diagnosis of EP.
Resumo:
The development of a robust assay based on MEKC for cefepime in human serum and plasma with internal quality assurance is reported. Sample preparation comprises protein precipitation in the presence of SDS at pH 4.5. This is a gentle approach for which decomposition of cefepime during sample handling is negligible. After hydrodynamic sample injection of the supernatant, analysis occurs in a phosphate/borate buffer at pH 9.1 with 75 mM SDS using normal polarity and analyte detection at 257 nm. The MEKC run time interval and throughput are about 5 min and seven samples per hour, respectively. The calibration range for cefepime is 1-60 μg/mL, with 1 μg/mL being the LOQ. The performance of the assay with multilevel internal calibration was assessed with calibration and control samples. The assay is shown to be simple, inexpensive, reproducible, and robust. It was applied to determine cefepime levels in the sera of critically ill patients and to assess the instability of cefepime in patient and control samples. Our data revealed that serum containing cefepime can be stored at -20°C for a short time, whereas for long-term storage, samples have to be kept at -70°C.
Resumo:
The mechanisms regulating retinal ganglion cell (RGC) development are crucial for retinogenesis and for the establishment of normal vision. However, these mechanisms are only vaguely understood. RGCs are the first neuronal lineage to segregate from pluripotent progenitors in the developing retina. As output neurons, RGCs display developmental features very distinct from those of the other retinal cell types. To better understand RGC development, we have previously constructed a gene regulatory network featuring a hierarchical cascade of transcription factors that ultimately controls the expression of downstream effector genes. This has revealed the existence of a Pou domain transcription factor, Pou4f2, that occupies a key node in the RGC gene regulatory network and that is essential for RGC differentiation. However, little is known about the genes that connect upstream regulatory genes, such as Pou4f2 with downstream effector genes responsible for RGC differentiation. The purpose of this study was to characterize the retinal function of eomesodermin (Eomes), a T-box transcription factor with previously unsuspected roles in retinogenesis. We show that Eomes is expressed in developing RGCs and is a mediator of Pou4f2 function. Pou4f2 directly regulates Eomes expression through a cis-regulatory element within a conserved retinal enhancer. Deleting Eomes in the developing retina causes defects reminiscent of those in Pou4f2(-/-) retinas. Moreover, myelin ensheathment in the optic nerves of Eomes(-/-) embryos is severely impaired, suggesting that Eomes regulates this process. We conclude that Eomes is a crucial regulator positioned immediately downstream of Pou4f2 and is required for RGC differentiation and optic nerve development.
Resumo:
A micro-electrospray interface was developed specifically for the neurobiological applications described in this dissertation. Incorporation of a unique nano-flow liquid chromatography micro-electrospray "needle" into the micro-electrospray interface (micro-ES/MS) increased the sensitivity of the mass spectrometric assay by $\sim$1000 fold and thus permitted the first analysis of specific neuroactive compounds in brain extracellular fluid collected by in vivo microdialysis (Md).^ Initial in vivo data presented deals with the pharmacodynamics of a novel GABA$\sb{\rm B}$ antagonist and the availability of the compound in its parent (unmetabolized) form to the brain of the anesthetized rat. Next, the first structurally specific endogenous release of (Met) $\sp5$-enkephalin was demonstrated in unanesthetized freely-moving animals (release of $\sim$6.5 fmole of (Met) $\sp5$-enkephalin into the dialysate by direct neuronal depolarization). The Md/micro-ES/MS system was used to test the acute effects of drugs of abuse on the endogenous release of (Met) $\sp5$-enkephalin from the globus pallidus/ventral pallidum brain region in rats. Four drugs known to be abused by man (morphine, cocaine, methamphetamine and diazepam) were tested. Morphine and cocaine both elicited a two-fold or more increase in the release of (Met) $\sp5$-enkephalin over vehicle controls. Diazepam elicited a small decrease in (Met) $\sp5$-enkephalin levels and methamphetamine showed no significant effect on (Met) $\sp5$-enkephalin. These results imply that (Met) $\sp5$-enkephalin may be involved in the reward pathway of certain drugs of abuse. ^
Resumo:
Genes of the basic helix-loop-helix transcription factor family have been implicated in many different developmental processes from neurogenesis to myogenesis. The recently cloned bHLH transcription factor, paraxis, has been found to be expressed in the paraxial mesoderm of the mouse suggesting a role for paraxis in the development of this mesodermal subtype which gives rise to the axial muscle, skeleton, and dermis of the embryo. In order to perform in vivo gain of function assays and obtain a better understanding of the possible roles of paraxis in mesodermal and somitic development, we have successfully identified homologues of paraxis in the frog, Xenopus laevis, where the process of mesodermal induction and development is best understood. The two homologues, Xparaxis-a and Xparaxis-b, are conserved with respect to their murine homologue in structure and expression within the embryo. Xparaxis genes are expressed immediately after gastrulation in the paraxial mesoderm of Xenopus embryos and are down regulated in the myotome of the mature somite with continued expression in the undifferentiated dermatome. Overexpression of Xparaxis-b in Xenopus embryos caused defects in the organization and morphology of the somites. This effect was not dependent on DNA binding of Xparaxis but is likely due to its dimerization with other bHLH factors. Co-injections with XE12 did not diminish the effects indicating that the defects were not the result of limiting amounts of XE12. We also demonstrated that Xparaxis does not cause obvious defects in the cell adhesions and movements required for proper mesoderm patterning during gastrulation. The paraxis proteins also lacked the ability to activate transcription as GAL4 fusion proteins in a GAL4 reporter assay, indicating that the genes may function more as modulators of the activity of dimerization partners than as positively acting cell determination factors. In agreement with this, Xparaxis is regulated in response to other pathways of bHLH gene action, in that XE12 can activate Xparaxis-b, in vivo. In addition we show regulation of Xparaxis in response to mMyoD induced myogenesis pathways, again suggesting Xparaxis plays an important role in the patterning and organization of the paraxial mesoderm. ^