974 resultados para Arctic-IBM_1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of analysis of satellite and field data collected in Russian Arctic Seas maps of distribution of primary production for different months of the vegetation period were compiled. These maps were used to estimate annual primary production of organic carbon: 55 million tons in the Barents Sea; about 20 million tons in the Kara Sea; 10-15 million tons in the Laptev Sea and in the East Siberian Sea, 42 million tons in the Chukchi Sea. In the central and eastern parts of the Barents Sea during the vegetation period values of primary production decreased by factor >5 (from >500 to <100 mg C/m**2/day). By reviewing results of studies with sediment traps vertical fluxes of organic carbon in different regions of the Arctic Basin were estimated. Significant temporal variability of Corg fluxes with maxima during phytoplankton blooms (by 830 mg C/m**2/day) was noted. Typical summer fluxes of Corg are 10-40 mg C/m**2/day in the southern Barents Sea, 1-10 mg C/m**2/day in the northern Barents Sea and in the Kara Sea, and up to 370 mg C/m**2/day in the zone of marginal filters of the Ob and Yenisey rivers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ice-covered Central Arctic Ocean is characterized by low primary productivity due to light and nutrient limitations. It has been speculated that the recent reduction in ice cover could lead to a substantial increase in primary production, but still little is known as to the fate of the ice-associated primary production, and of nutrient supply with increasing warming. This study presents results from the Central Arctic Ocean collected during summer 2012, when sea-ice reached a minimum extent since the onset of satellite observations. Net primary productivity (NPP) was measured in water column, sea ice and melt ponds by 14CO2 uptake at different irradiances. Photosynthesis vs. irradiance (PI) curves were established in laboratory experiments and used to upscale measured NPP to the deep Eurasian Basin (north of 78°N) using the irradiance-based Central Arctic Ocean Primary Productivity model (CAOPP). In addition, new annual production was calculated from the seasonal nutrient drawdown in the mixed layer since last winter. Results show that ice algae can contribute up to 60% to primary production in the Central Arctic at the end of the season. The ice-covered water column had lower NPP rates than open water probably due to light limitation. According to the nutrient ratios in the euphotic zone, nitrate limitation was detected in the Siberian Seas (Laptev Sea area), while silicate was the main limiting nutrient at the ice margin influenced by Atlantic waters. Although sea-ice cover was substantially reduced in 2012, total annual new production in the Eurasian Basin was 17 ± 7 Tg C/yr, which is similar to previous estimates. However, when including the contribution by sub-ice algal filaments, the annual production for the deep Eurasian Basin (north of 78°N) is 16 Tg C/yr higher than estimated before. Our data suggest that sub-ice algae might be responsible for potential local increases in NPP due to higher light availability under the ice, and their ability to benefit from a wider area of nutrients as they drift with the ice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snow cover has dramatic effects on the structure and functioning of Arctic ecosystems in winter. In the tundra, the subnivean space is the primary habitat of wintering small mammals and may be critical for their survival and reproduction. We have investigated the effects of snow cover and habitat features on the distributions of collared lemming (Dicrostonyx groenlandicus) and brown lemming (Lemmus trimucronatus) winter nests, as well as on their probabilities of reproduction and predation by stoats (Mustela erminea) and arctic foxes (Vulpes lagopus). We sampled 193 lemming winter nests and measured habitat features at all of these nests and at random sites at two spatial scales. We also monitored overwinter ground temperature at a subsample of nest and random sites. Our results demonstrate that nests were primarily located in areas with high micro-topography heterogeneity, steep slopes, deep snow cover providing thermal protection (reduced daily temperature fluctuations) and a high abundance of mosses. The probability of reproduction increased in collared lemming nests at low elevation and in brown lemming nests with high availability of some graminoid species. The probability of predation by stoats was density dependent and was higher in nests used by collared lemmings. Snow cover did not affect the probability of predation of lemming nests by stoats, but deep snow cover limited predation attempts by arctic foxes. We conclude that snow cover plays a key role in the spatial structure of wintering lemming populations and potentially in their population dynamics in the Arctic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major findings of the Survey of Living Conditions in the Arctic (SLiCA) are: (1) A combination of traditional activities and cash employment is the prevailing lifestyle of Arctic indigenous peoples; (2) family ties, social support of each other, and traditional activities have a lot to do with why indigenous people choose to remain in Arctic communities; (3) well-being is closely related to job opportunities, locally available fish and game, and a sense of local control. Well-being and depression (and related problems like suicide) are flip sides of the same coin. Improving well-being may reduce social problems; and, (4) health conditions vary widely in the Arctic: three-in-four Greenlandic Inuit self-rate their health as at least very good compared with one-in-two Canadian and Alaska Inuit and one-in-five Chukotka indigenous people. Findings are based on 7,200 interviews in a probability sample of Inupiat settlement regions of Alaska, the four Inuit settlement regions of Canada, all of Greenland, and the Anadyrskij, Anadyr, Shmidtovs, Beringovskij, Chukotskij, Iujl'tinskij, Bilibinskij, Chaunskij, Providenskij, Uel'Kal' districts of Chukotka. Indigenous people and researchers from Greenland, Russia, Canada, the United States, Denmark, Norway, Sweden, and Finland collaborated on all phases of the study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytoplankton community was studied in the Bering Strait and over the shelf, continental slope, and deep-water zones of the Chukchi and Beaufort Seas in the middle of the vegetative season (July-August 2003). Its structure was analyzed in relation to ice conditions and seasonal patterns of water warming, stratification, and nutrient concentrations. Overall variations in phytoplankton abundance from 200 to 6000000 cells/l and biomass from 0.1 to 444.1 µg C/l.were estimated. The bulk of phytoplankton cells concentrated in the seasonal picnocline at depths 10-25 m. The highest values of cell abundance and biomass were recorded in regions influenced by inflow of Bering Sea waters or characterized by intense hydrodynamics, such as the Bering Strait, Barrow Canyon, and the outer shelf and slope of the Chukchi Sea. In the middle of the vegetative season, phytoplankton in the study region of the Western Arctic proved to comprise three successional (seasonal) assemblages: early spring, late spring, and summer assemblages. Their spatial distribution was dependent mainly on local features of hydrological and nutrient regimes rather than on general latitudinal trends of seasonal succession characteristic of arctic ecosystems.