910 resultados para Architecture for the physically handicapped


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), belongs to a class of integral membrane proteins termed tail-anchored proteins. Its membrane association is mediated by the C-terminal 21 amino acid residues, which are dispensable for RdRp activity in vitro. For this study, we investigated the role of this domain, termed the insertion sequence, in HCV RNA replication in cells. Based on a structural model and the amino acid conservation among different HCV isolates, we designed a panel of insertion sequence mutants and analyzed their membrane association and RNA replication. Subgenomic replicons with a duplication of an essential cis-acting replication element overlapping the sequence that encodes the C-terminal domain of NS5B were used to unequivocally distinguish RNA versus protein effects of these mutations. Our results demonstrate that the membrane association of the RdRp is essential for HCV RNA replication. Interestingly, certain amino acid substitutions within the insertion sequence abolished RNA replication without affecting membrane association, indicating that the C-terminal domain of NS5B has functions beyond serving as a membrane anchor and that it may be involved in critical intramembrane protein-protein interactions. These results have implications for the functional architecture of the HCV replication complex and provide new insights into the expanding spectrum of tail-anchored proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we discuss pros and cons ofdifferent models for financial market regulationand supervision and we present a proposal forthe re-organisation of regulatory and supervisoryagencies in the Euro Area. Our arguments areconsistent with both new theories and effectivebehaviour of financial intermediaries inindustrialized countries. Our proposed architecturefor financial market regulation is based on theassignment of different objectives or "finalities"to different authorities, both at the domesticand the European level. According to thisperspective, the three objectives of supervision- microeconomic stability, investor protectionand proper behaviour, efficiency and competition- should be assigned to three distinct Europeanauthorities, each one at the centre of a Europeansystem of financial regulators and supervisorsspecialized in overseeing the entire financialmarket with respect to a single regulatoryobjective and regardless of the subjective natureof the intermediaries. Each system should bestructured and organized similarly to the EuropeanSystem of Central Banks and work in connectionwith the central bank which would remain theinstitution responsible for price and macroeconomicstability. We suggest a plausible path to buildour 4-peak regulatory architecture in the Euro area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plant architecture hypothesis predicts that variation in host plant architecture influences insect herbivore community structure, dynamics and performance. In this study we evaluated the effects of Macairea radula (Melastomataceae) architecture on the abundance of galls induced by a moth (Lepidoptera: Gelechiidae). Plant architecture and gall abundance were directly recorded on 58 arbitrarily chosen M. radula host plants in the rainy season of 2006 in an area of Cerrado vegetation, southeastern Brazil. Plant height, dry biomass, number of branches, number of shoots and leaf abundance were used as predicting variables of gall abundance and larval survival. Gall abundance correlated positively with host plant biomass and branch number. Otherwise, no correlation (p > 0.05) was found between gall abundance with shoot number or with the number of leaves/plant. From a total of 124 galls analyzed, 67.7% survived, 14.5% were attacked by parasitoids, while 17.7% died due to unknown causes. Larvae that survived or were parasitized were not influenced by architectural complexity of the host plant. Our results partially corroborate the plant architecture hypothesis, but since parasitism was not related to plant architecture it is argued that bottom-up effects may be more important than top-down effects in controlling the population dynamics of the galling lepidopteran. Because galling insects often decrease plant fitness, the potential of galling insects in selecting for less architectural complex plants is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First report of interspecific facultative social parasitism in the paper wasp genus Mischocyttarus Saussure (Hymenoptera, Vespidae). Parasitism of colonies of the social wasp Mischocyttarus cerberus Ducke, 1918 by females of Mischocyttarus consimilis Zikán, 1949 was observed in a rural area of Dourados, state of Mato Grosso do Sul, Brazil. In all monitored cases, the invasion occurred in the pre-emergence colony stage, generally by a single female of M. consimilis. The period of establishment of the foreign female in the host colony was marked by antagonistic behaviors between the host female and the invasive. In general, the architecture of the parasitized nest was modified from the typical architecture of the host species nest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I am pleased to present the performance report for the Iowa Department for the Blind for fiscal year 2008. This report is provided in compliance with sections 8E.210 and 216B.7 of the Code of Iowa. It contains valuable information about results achieved because of the services that we and our partners provided to blind and visually impaired Iowans during the past fiscal year in the areas of Vocational Rehabilitation, Independent Living, Library Services, and Resource Management. We determine our competitive success in a number of ways. We look at the federal standards and indicators to learn our ranking in relation to the performance of other public rehabilitation agencies. We compare our library's production and circulation figures with those from previous years to determine trends. We set our own standards for success by looking at such factors as the number of successful case closures, average hourly wage at case closure, skills training provided, and compliance with regulations. Results show that the Department is working positively toward achieving its strategic goals of increasing the independence and productivity of blind Iowans and improving access to information for blind Iowans. Major accomplishments of the year included:  The selection of our Library as one of eight libraries to receive the new digital talking book machines and books in digital media from the National Library Service for the Blind and Physically Handicapped. Priority for distribution of the machines is given to Library patrons who are veterans.  The Department, the Iowa Braille School, and the Department of Education have been promoting the new expanded core curriculum as part of their continued efforts to improve the coordination and delivery of services to blind and visually impaired students in Iowa.  The Department's five-year grant funded Pathfinders mentoring program ended this year. A total of 49 blind youths aged 16-26 were paired with successful blind adult mentors. Assessments of the program clearly showed that participation in the program had a measurable positive effect on the youth involved.  Finally, earnings ratios and the percentage of employment for vocational rehabilitation clients of the Department are among the best in the nation, as measured by the U.S. Rehabilitation Services Administration's standards and indicators for the year ended September 30, 2007. Overall, we met or exceeded 13 of 18 targets included in this report. A discussion of the Department's services, customers, and organizational structure, and budget appears in the "Department Overview" that follows. Information pertaining to performance results appears in the final section of this document. The success of the Department's programs is evident in the success achieved by blind Iowans. It is reflected in the many blind persons who can be seen traveling about independently, going to their jobs and to the community and family activities in which they participate. Sincerely, Karen A. Keninger, Director Iowa Department for the Blind

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans spend one third of their life sleeping, then we could raise the basic question: Why do we sleep? Despite the fact that we still don't fully understand its function, we made much progress in understanding at different levels how sleep is regulated. One model suggests that sleep is regulated by two processes: a homeostatic process that tracks the need for sleep and by a circadian rhythm that determines the preferred time-of-day sleep occurs. At the molecular level circadian rhythms are a property of interlocking transcriptional regula-tors referred to as clock genes. The heterodimeric transcription factors BMAL1::CLOCK/NPAS2 drive the transcription of many target genes including the clock genes Cryptochome1 (Cry1), Cry2, Period1 (Per1), and Per2. The encoded CRY/PER proteins are transcriptional inhibitors of BMAL1::CLOCK/NPAS2 thereby providing negative feedback to their own transcription. These genes seem, however, also involved in sleep homeostasis because the brain expression of clock genes, es-pecially that of Per2, increase as a function of time-spent-awake and because mice lacking clock genes display altered sleep homeostasis. The aim of first part of my doctoral work has been to advance our understanding the link that exists between sleep homeostasis and circadian rhythms investigating a possible mechanism by which sleep deprivation could alter clock gene expression by quantifying DNA-binding of the core-clock genes BMAL1, CLOCK and NPAS2 to their target chromatin loci including the E-box enhancers of the Per2 promoter. We made use of chromatin immunoprecipitation (ChIP) and quantitative poly-merase chain reaction (qPCR) to show that DNA-binding of CLOCK and BMAL1 to their target genes changes as a function of time-of-day in both liver and cerebral cortex. We then performed a 6h sleep deprivation (SD) and observed a significant decrease in DNA-binding of CLOCK and BMAL1 to Dbp. This is consistent with a decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was similarly decreased following SD. However, SD has been previously shown to in-crease Per2 expression in the cortex which seems paradoxical. Our results demonstrate that sleep-wake history can affect the molecular clock machinery directly at the level of the chromatin thereby altering the cortical expression of Dbp and Per2, and likely other targets. However, the precise dy-namic relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive. The second aim of my doctoral work has been to perform an in depth characterization of cir-cadian rhythmicity, sleep architecture, analyze the response to SD in full null-Per2 knock-out (Per2-/-) mice, and Per1-/- mice, as well as their double knock-out offspring (Per1,2-/-) and littermate wildtype (Wt) mice. The techniques used include locomotor activity recording by passive infrared (PIR) sen-sors, EEG/EMG surgery, recording, and analysis, and cerebral cortex extraction and quantification of mRNA levels by qPCR. Under standard LD12:12 conditions, we found that wakefulness onset, as well as the time courses of clock gene expression in the brain and corticosterone plasma levels were ad-vanced by about 2h in Per2-/- mice compared to Wt mice. When released under constant dark condi-tions almost all Per2-/- mice (97%) became arrhythmic immediately. From these observations, we conclude that while Per2-/- mice seem to be able to anticipate dark onset, this does not result from a self-sustained circadian clock. Our results suggest instead that the earlier onset of activity results from a labile, not-self sustained 22h rhythm linked to light onset suggesting the existence of a light-driven rhythm. Analyses of sleep under LD12:12 conditions revealed that in both Per2-/- and Per1,2-/- mice the same sleep phenotypes are observed compared to Wt mice: increased NREM sleep frag-mentation and inability to adequately compensate the loss of NREM sleep. That suggests a possible role of PER2 in sleep consolidation and recovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The opportunistic ubiquitous pathogen Pseudomonas aeruginosa strain PAOl is a versatile Gram-negative bacterium that has the extraordinary capacity to colonize a wide diversity of ecological niches and to cause severe and persistent infections in humans. To ensure an optimal coordination of the genes involved in nutrient utilization, this bacterium uses the NtrB/C and/or the CbrA/B two-component systems, to sense nutrients availability and to regulate in consequence the expression of genes involved in their uptake and catabolism. NtrB/C is specialized in nitrogen utilization, while the CbrA/B system is involved in both carbon and nitrogen utilization and both systems activate their target genes expression in concert with the alternative sigma factor RpoN. Moreover, the NtrB/C and CbrA/B two- component systems regulate the secondary metabolism of the bacterium, such as the production of virulence factors. In addition to the fine-tuning transcriptional regulation, P. aeruginosa can rapidly modulate its metabolism using small non-coding regulatory RNAs (sRNAs), which regulate gene expression at the post-transcriptional level by diverse and sophisticated mechanisms and contribute to the fast physiological adaptability of this bacterium. In our search for novel RpoN-dependent sRNAs modulating the nutritional adaptation of P. aeruginosa PAOl, we discovered NrsZ (Nitrogen regulated sRNA), a novel RpoN-dependent sRNA that is induced under nitrogen starvation by the NtrB/C two-component system. NrsZ has a unique architecture, formed of three similar stem-loop structures (SL I, II and II) separated by variant spacer sequences. Moreover, this sRNA is processed in short individual stem-loop molecules, by internal cleavage involving the endoribonuclease RNAse E. Concerning NrsZ functions in P. aeruginosa PAOl, this sRNA was shown to trigger the swarming motility and the rhamnolipid biosurfactants production. This regulation is due to the NrsZ-mediated activation of rhlA expression, a gene encoding for an enzyme essential for swarming motility and rhamnolipids production. Interestingly, the SL I structure of NrsZ ensures its regulatory function on rhlA expression, suggesting that the similar SLs are the functional units of this modular sRNA. However, the regulatory mechanism of action of NrsZ on rhlA expression activation remains unclear and is currently being investigated. Additionally, the NrsZ regulatory network was investigated by a transcriptome analysis, suggesting that numerous genes involved in both primary and secondary metabolism are regulated by this sRNA. To emphasize the importance of NrsZ, we investigated its conservation in other Pseudomonas species and demonstrated that NrsZ is conserved and expressed under nitrogen limitation in Pseudomonas protegens Pf-5, Pseudomonas putida KT2442, Pseudomonas entomophila L48 and Pseudomonas syringae pv. tomato DC3000, strains having different ecological features, suggesting an important role of NrsZ in the adaptation of Pseudomonads to nitrogen starvation. Interestingly the architecture of the different NrsZ homologs is similarly composed by SL structures and variant spacer sequences. However, the number of SL repetitions is not identical, and one to six SLs were predicted on the different NrsZ homologs. Moreover, NrsZ is processed in short molecules in all the strains, similarly to what was previously observed in P. aeruginosa PAOl, and the heterologous expression of the NrsZ homologs restored rhlA expression, swarming motility and rhamnolipids production in the P. aeruginosa NrsZ mutant. In many aspects, NrsZ is an atypical sRNA in the bacterial panorama. To our knowledge, NrsZ is the first described sRNA induced by the NtrB/C. Moreover, its unique modular architecture and its processing in similar short SL molecules suggest that NrsZ belongs to a novel family of bacterial sRNAs. -- L'agent pathogène opportuniste et ubiquitaire Pseudomonas aeruginosa souche PAOl est une bactérie Gram négative versatile ayant l'extraordinaire capacité de coloniser différentes niches écologiques et de causer des infections sévères et persistantes chez l'être humain. Afin d'assurer une coordination optimale des gènes impliqués dans l'utilisation de différents nutriments, cette bactérie se sert de systèmes à deux composants tel que NtrB/C et CbrA/B afin de détecter la disponibilité des ressources nutritives, puis de réguler en conséquence l'expression des gènes impliqués dans leur importation et leur catabolisme. Le système NtrB/C régule l'utilisation des sources d'azote alors que le système CbrA/B est impliqué à la fois dans l'utilisation des sources de carbone et d'azote. Ces deux systèmes activent l'expression de leurs gènes-cibles de concert avec le facteur sigma alternatif RpoN. En outre, NtrB/C et CbrA/B régulent aussi le métabolisme secondaire, contrôlant notamment la production d'importants facteurs de virulence. En plus de toutes ces régulations génétiques fines ayant lieu au niveau transcriptionnel, P. aeruginosa est aussi capable de moduler son métabolisme en se servant de petits ARNs régulateurs non-codants (ARNncs), qui régulent l'expression génétique à un niveau post- transcriptionnel par divers mécanismes sophistiqués et contribuent à rendre particulièrement rapide l'adaptation physiologique de cette bactérie. Au cours de nos recherches sur de nouveaux ARNncs dépendant du facteur sigma RpoN et impliqués dans l'adaptation nutritionnelle de P. aeruginosa PAOl, nous avons découvert NrsZ (Nitrogen regulated sRNA), un ARNnc induit par la cascade NtrB/C-RpoN en condition de carence en azote. NrsZ a une architecture unique, composée de trois structures en tige- boucle (TB I, II et III) hautement similaires et séparées par des « espaceurs » ayant des séquences variables. De plus, cet ARNnc est clivé en petits fragments correspondant au trois molécules en tige-boucle, par un processus de clivage interne impliquant l'endoribonucléase RNase E. Concernant les fonctions de NrsZ chez P. aeruginosa PAOl, cet ARNnc est capable d'induire la motilité de type « swarming » et la production de biosurfactants, nommés rhamnolipides. Cette régulation est due à l'activation par NrsZ de l'expression de rhlA, un gène essentiel pour la motilité de type swarming et pour la production de rhamnolipides. Étonnamment, la structure TB I est capable d'assurer à elle seule la fonction régulatrice de NrsZ sur l'expression de rhlA, suggérant que ces molécules TBs sont les unités fonctionnelles de cet ARNnc modulaire. Cependant, le mécanisme moléculaire par lequel NrsZ active l'expression de rhlA demeure à ce jour incertain et est actuellement à l'étude. En plus, le réseau de régulations médiées par NrsZ a été étudié par une analyse de transcriptome qui a indiqué que de nombreux gènes impliqués dans le métabolisme primaire ou secondaire seraient régulés par NrsZ. Pour accentuer l'importance de NrsZ, nous avons étudié sa conservation dans d'autres espèces de Pseudomonas. Ainsi, nous avons démontré que NrsZ est conservé et exprimé en situation de carence d'azote par les souches Pseudomonas protegens Pf-5, Pseudomonas putida KT2442, Pseudomonas entomophila L48, Pseudomonas syringae pv. tomato DC3000, quatre espèces ayant des caractéristiques écologiques très différentes, suggérant que NrsZ joue un rôle important dans l'adaptation du genre Pseudomonas envers la carence en azote. Chez toutes les souches étudiées, les différents homologues de NrsZ présentent une architecture similaire faite de TBs conservées et d'espaceurs. Cependant, le nombre de TBs n'est pas identique et peut varier de une à six copies selon la souche. Les différentes versions de NrsZ sont clivées en petites molécules dans ces quatre souches, comme il a été observé chez P. aeruginosa PAOl. De plus, l'expression hétérologue des différentes variantes de NrsZ est capable de restaurer l'expression de rhlA, la motilité swarming et la production de rhamnolipides dans une souche de P. aeruginosa dont nrsZ a été inactivé. Par bien des aspects, NrsZ est un ARNnc atypique dans le monde bactérien. À notre connaissance, NrsZ est le premier ARNnc décrit comme étant régulé par le système NtrB/C. De plus, son unique architecture modulaire et son clivage en petites molécules similaires suggèrent que NrsZ appartient à une nouvelle famille d'ARNncs bactériens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discovery of exhumed continental mantle and hyper-extended crust in present-day magma-poor rifted margins is at the origin of a paradigm shift within the research field of deep-water rifted margins. It opened new questions about the strain history of rifted margins and the nature and composition of sedimentary, crustal and mantle rocks in rifted margins. Thanks to the benefit of more than one century of work in the Alps and access to world-class outcrops preserving the primary relationships between sediments and crustal and mantle rocks from the fossil Alpine Tethys margins, it is possible to link the subsidence history and syn-rift sedimentary evolution with the strain distribution observed in the crust and mantle rocks exposed in the distal rifted margins. In this paper, we will focus on the transition from early to late rifting that is associated with considerable crustal thinning and a reorganization of the rift system. Crustal thinning is at the origin of a major change in the style of deformation from high-angle to low-angle normal faulting which controls basin-architecture, sedimentary sources and processes and the nature of basement rocks exhumed along the detachment faults in the distal margin. Stratigraphic and isotopic ages indicate that this major change occurred in late Sinemurian time, involving a shift of the syn-rift sedimentation toward the distal domain associated with a major reorganization of the crustal structure with exhumation of lower and middle crust. These changes may be triggered by mantle processes, as indicated by the infiltration of MOR-type magmas in the lithospheric mantle, and the uplift of the Brianconnais domain. Thinning and exhumation of the crust and lithosphere also resulted in the creation of new paleogeographic domains, the Proto Valais and Liguria-Piemonte domains. These basins show a complex, 3D temporal and spatial evolution that might have evolved, at least in the case of the Liguria-Piemonte basin, in the formation of an embryonic oceanic crust. The re-interpretation of the rift evolution and the architecture of the distal rifted margins in the Alps have important implications for the understanding of rifted margins worldwide, but also for the paleogeographic reconstruction of the Alpine domain and its subsequent Alpine compressional overprint.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The function of sleep remains unknown. To gain insight into the function of sleep in natural conditions, I assessed variation in sleep architecture and its link with fitness-related phenotypic traits. I considered melanin-based coloration because its underlying genetic basis is very well known giving an opportunity to examine whether some genes pleiotropically regulate both coloration and sleep. The melanocortin system is known to generate covariation between melanin-based coloration and other phenotypes like behaviour, physiology and life history traits. I investigated whether this system of genes could participate in the co-expression of coloration and sleep. I carried out a study with nestling barn owls (Tyto alba) in order to tackle the potential link between variation in color traits and the ontogeny of sleep under natural conditions. For this I established a suitable method for recording the brain activity (electroencephalogram) of owls in nature. Birds are especially interesting, because they convergently evolved sleep states similar to those exhibited by mammals. As in mammals, I found that in owlets time spent in rapid eye movement (REM) sleep declines with age, a relationship thought to eflect developmental changes in the brain. Thus this developmental trajectory appears to reflect a fundamental feature of sleep. Additionally, I discovered an association between a gene involved in melanism expressed in the feather follicles (proprotein convertase subtilisin/kexin type 2, PCSK2) and the age-related changes in sleep in the brain. Nestlings with higher expression levels of PCSK2 showed a more precocial pattern of sleep development and a higher degree of melanin-based coloration compared to nestlings with lower PCSK2 expression. Also sleep architecture and the development of rhythmicity in brain and physical activity was related to plumage traits of the nestlings and their biological parents. This pattern during ontogeny might reflect differences in life l history strategies, antipredator behaviour and developmental pace. Therefore, differently colored individuals may differentially deal with trade-offs between the costs and benefits of sleep which in turn lead to differences in brain organization and ultimately fitness. These results should stimulate evolutionary biologists to consider sleep as a major life history trait. Résumé La fonction du sommeil reste inconnue. Afin d'acquérir une meilleur compréhension de la fonction du sommeil dans les conditions naturelles, j'ai analysé la variation dans l'architecture du sommeil et son lien avec d'autres traits phénotypiques liés au succès reproducteur (fitness). J'ai choisi et examiné la coloration mélanique, car ses bases génétiques sont bien connues et il est ainsi possible d'étudier si certains gènes, de façon pléiotropique régulent à la fois la coloration et le sommeil. J'ai exploré si ce système génétique était impliqué dans la co-expression de la coloration et du sommeil. J'ai effectué mon étude sur des poussins de chouette effraie (Tyto alba) en condition naturelle, pour rechercher ce lien potentiel entre la variation de la coloration et l'ontogenèse du sommeil. Dans ce but, j'ai établi une méthodologie permettant d'enregistrer l'activité cérébrale (électroencéphalogramme) des chouettes dans la nature. Les oiseaux sont particulièrement intéressants car ils ont développé, par évolution convergente, des phases de sommeil similaires à celles des mammifères. De manière semblable à ce qui a été montré chez les mammifères, j'ai découvert que le temps passé dans le sommeil paradoxal diminue avec l'âge des poussins. On pense que ceci est dû aux changements développementaux au niveau du cerveau. Cette trajectoire développementale semble refléter une caractéristique fondamentale du sommeil. J'ai également découvert une association entre l'un des gènes impliqué dans le mélanisme, exprimé dans les follicules plumeux (proprotein convertase subtilisin/kexin type 2, PCSK2), et les changements dans la structure du sommeil avec l'âge. Les poussins ayant un niveau d'expression génétique élevé de la PCSK2 présentent une structure du sommeil plus précoce et un taux de coloration dû à la mélanine plus élevé que des poussins avec un niveau d'expression moindre de la PCSK2. L'architecture du sommeil et le développement de la rythmicité dans le cerveau ainsi que l'activité physique sont également liés à la coloration des plumes des poussins et pourraient ainsi refléter des différences de stratégies d'histoire de vie, de comportements anti-prédateur et de vitesses développementales. Ainsi, des individus de coloration différente sembleraient traiter différemment les coûts et les bénéfices du sommeil, ce qui aurait des conséquences sur l'organisation cérébrale et pour finir, sur le succès reproducteur. Ces résultats devraient encourager les biologistes évolutionnistes à considérer le sommeil comme un important trait d'histoire de vie. Zusammenfassung Die Funktion von Schlaf ist noch unbekannt. Um mehr Einsicht in diese unter natürlichen Bedingungen zu bekommen, habe ich die Variation in der Schlafarchitektur und die Verknüpfung mit phänotypischen Merkmalen, die mit der Fitness zusammenhängen, studiert. Ich habe mir melanin-basierte Färbung angesehen, da die zugrunde liegende genetische Basis bekannt ist und somit die Möglichkeit gegeben ist, zu untersuchen, ob einige Gene beides regulieren, Färbung und Schlaf. Das melanocortin System generiert eine Kovariation zwischen melanin-basierter Färbung und anderen phänotypischer Merkmale wie Verhalten, Physiologie und Überlebensstrategien. Ich habe untersucht, ob dieses Gensystem an einer gleichzeitigen Steuerung von Färbung und Schlaf beteiligt ist. Dazu habe ich Schleiereulen (Tyto alba) studiert um einen möglichen Zusammenhang zwischen der Variation in der Pigmentierung und der Entwicklung des Schlafs unter natürlichen Bedingungen zu entdecken. Für diese Studie entwickelte ich eine Methode um die Gehirnaktivität (Elektroenzephalogramm) bei Eulen in der Natur aufzunehmen. Vögel sind besonders interessant, da sie die gleichen Schlafstadien aufweisen wie Säugetiere und diese unabhängig konvergent entwickelt haben. Genauso wie bei Säugetieren nahm die Dauer des sogenannten ,,rapid eye movement" (REM) - Schlafes mit zunehmendem Alter ab. Es wird angenommen, dass dieser Zusammenhang die Entwicklung des Gehirns widerspiegelt. Daher scheint dieses Entwicklungsmuster ein fundamentaler Aspekt von Schlaf zu sein. Zusätzlich entdeckte ich einen Zusammenhang zwischen der Aktivität eines Gens in den Federfollikeln (proprotein convertase subtilisin/kexin type 2, PCSK2), das für die Ausprägung schwarzer Punkte auf den Federn der Eulen verantwortlich ist, und den altersabhängigen Änderungen im Schlafmuster im Gehirn. Küken mit höherer Aktivität von PCSK2 zeigten eine frühreifere Schlafentwicklung und eine dunklere Färbung als Küken mit niedriger PCSK2 Aktivität. Die Architekture des Schlafes und die Entwicklung der Rhythmik im Gehirn und die der physischen Aktivität ist mit der Färbung des Gefieders von den Küken und ihren Eltern verknüpft. Dieses Muster während der Entwicklung kann Unterschiede in Überlebensstrategien, Feindabwehrverhalten und in der Entwicklungsgeschwindigkeit reflektieren. Unterschiedlich gefärbte Individuen könnten unterschiedliche Strategien haben um zwischen den Kosten und Nutzen von Schlaf zu entscheiden, was zu Unterschieden in der Gehirnstruktur führen kann und letztendlich zur Fitness. Diese Ergebnisse sollten Evolutionsbiologen stimulieren Schlaf als einen wichtigen Bestandteil des Lebens zu behandeln.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Societies of ants, bees, wasps and termites dominate many terrestrial ecosystems (Wilson 1971). Their evolutionary and ecological success is based upon the regulation of internal conflicts (e.g. Ratnieks et al. 2006), control of diseases (e.g. Schmid-Hempel 1998) and individual skills and collective intelligence in resource acquisition, nest building and defence (e.g. Camazine 2001). Individuals in social species can pass on their genes not only directly trough their own offspring, but also indirectly by favouring the reproduction of relatives. The inclusive fitness theory of Hamilton (1963; 1964) provides a powerful explanation for the evolution of reproductive altruism and cooperation in groups with related individuals. The same theory also led to the realization that insect societies are subject to internal conflicts over reproduction. Relatedness of less-than-one is not sufficient to eliminate all incentive for individual selfishness. This would indeed require a relatedness of one, as found among cells of an organism (Hardin 1968; Keller 1999). The challenge for evolutionary biology is to understand how groups can prevent or reduce the selfish exploitation of resources by group members, and how societies with low relatedness are maintained. In social insects the evolutionary shift from single- to multiple queens colonies modified the relatedness structure, the dispersal, and the mode of colony founding (e.g. (Crozier & Pamilo 1996). In ants, the most common, and presumably ancestral mode of reproduction is the emission of winged males and females, which found a new colony independently after mating and dispersal flights (Hölldobler & Wilson 1990). The alternative reproductive tactic for ant queens in multiple-queen colonies (polygyne) is to seek to be re-accepted in their natal colonies, where they may remain as additional reproductives or subsequently disperse on foot with part of the colony (budding) (Bourke & Franks 1995; Crozier & Pamilo 1996; Hölldobler & Wilson 1990). Such ant colonies can contain up to several hundred reproductive queens with an even more numerous workforce (Cherix 1980; Cherix 1983). As a consequence in polygynous ants the relatedness among nestmates is very low, and workers raise brood of queens to which they are only distantly related (Crozier & Pamilo 1996; Queller & Strassmann 1998). Therefore workers could increase their inclusive fitness by preferentially caring for their closest relatives and discriminate against less related or foreign individuals (Keller 1997; Queller & Strassmann 2002; Tarpy et al. 2004). However, the bulk of the evidence suggests that social insects do not behave nepotistically, probably because of the costs entailed by decreased colony efficiency or discrimination errors (Keller 1997). Recently, the consensus that nepotistic behaviour does not occur in insect colonies was challenged by a study in the ant Formica fusca (Hannonen & Sundström 2003b) showing that the reproductive share of queens more closely related to workers increases during brood development. However, this pattern can be explained either by nepotism with workers preferentially rearing the brood of more closely related queens or intrinsic differences in the viability of eggs laid by queens. In the first chapter, we designed an experiment to disentangle nepotism and differences in brood viability. We tested if workers prefer to rear their kin when given the choice between highly related and unrelated brood in the ant F. exsecta. We also looked for differences in egg viability among queens and simulated if such differences in egg viability may mistakenly lead to the conclusion that workers behave nepotistically. The acceptance of queens in polygnous ants raises the question whether the varying degree of relatedness affects their share in reproduction. In such colonies workers should favour nestmate queens over foreign queens. Numerous studies have investigated reproductive skew and partitioning of reproduction among queens (Bourke et al. 1997; Fournier et al. 2004; Fournier & Keller 2001; Hammond et al. 2006; Hannonen & Sundström 2003a; Heinze et al. 2001; Kümmerli & Keller 2007; Langer et al. 2004; Pamilo & Seppä 1994; Ross 1988; Ross 1993; Rüppell et al. 2002), yet almost no information is available on whether differences among queens in their relatedness to other colony members affects their share in reproduction. Such data are necessary to compare the relative reproductive success of dispersing and non-dispersing individuals. Moreover, information on whether there is a difference in reproductive success between resident and dispersing queens is also important for our understanding of the genetic structure of ant colonies and the dynamics of within group conflicts. In chapter two, we created single-queen colonies and then introduced a foreign queens originating from another colony kept under similar conditions in order to estimate the rate of queen acceptance into foreign established colonies, and to quantify the reproductive share of resident and introduced queens. An increasing number of studies have investigated the discrimination ability between ant workers (e.g. Holzer et al. 2006; Pedersen et al. 2006), but few have addressed the recognition and discrimination behaviour of workers towards reproductive individuals entering colonies (Bennett 1988; Brown et al. 2003; Evans 1996; Fortelius et al. 1993; Kikuchi et al. 2007; Rosengren & Pamilo 1986; Stuart et al. 1993; Sundström 1997; Vásquez & Silverman in press). These studies are important, because accepting new queens will generally have a large impact on colony kin structure and inclusive fitness of workers (Heinze & Keller 2000). In chapter three, we examined whether resident workers reject young foreign queens that enter into their nest. We introduced mated queens into their natal nest, a foreign-female producing nest, or a foreign male-producing nest and measured their survival. In addition, we also introduced young virgin and mated queens into their natal nest to examine whether the mating status of the queens influences their survival and acceptance by workers. On top of polgyny, some ant species have evolved an extraordinary social organization called 'unicoloniality' (Hölldobler & Wilson 1977; Pedersen et al. 2006). In unicolonial ants, intercolony borders are absent and workers and queens mix among the physically separated nests, such that nests form one large supercolony. Super-colonies can become very large, so that direct cooperative interactions are impossible between individuals of distant nests. Unicoloniality is an evolutionary paradox and a potential problem for kin selection theory because the mixing of queens and workers between nests leads to extremely low relatedness among nestmates (Bourke & Franks 1995; Crozier & Pamilo 1996; Keller 1995). A better understanding of the evolution and maintenance of unicoloniality requests detailed information on the discrimination behavior, dispersal, population structure, and the scale of competition. Cryptic genetic population structure may provide important information on the relevant scale to be considered when measuring relatedness and the role of kin selection. Theoretical studies have shown that relatedness should be measured at the level of the `economic neighborhood', which is the scale at which intraspecific competition generally takes place (Griffin & West 2002; Kelly 1994; Queller 1994; Taylor 1992). In chapter four, we conducted alarge-scale study to determine whether the unicolonial ant Formica paralugubris forms populations that are organised in discrete supercolonies or whether there is a continuous gradation in the level of aggression that may correlate with genetic isolation by distance and/or spatial distance between nests. In chapter five, we investigated the fine-scale population structure in three populations of F. paralugubris. We have developed mitochondria) markers, which together with the nuclear markers allowed us to detect cryptic genetic clusters of nests, to obtain more precise information on the genetic differentiation within populations, and to separate male and female gene flow. These new data provide important information on the scale to be considered when measuring relatedness in native unicolonial populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is an integral membrane protein that has only poorly been characterized to date. In particular, a precise membrane topology is thus far elusive. Here, we explored a novel strategy to map the membrane topology of HCV NS4B. METHODS: Selective permeabilization of the plasma membrane, maleimide-polyethyleneglycol (mPEG) labeling of natural or engineered cysteine residues and immunoblot analyses were combined to map the membrane topology of NS4B. Cysteine substitutions were introduced at carefully selected positions within NS4B and their impact on HCV RNA replication and infectious virus production analyzed in cell culture. RESULTS: We established a panel of viable HCV mutants with cysteine substitutions at strategic positions within NS4B. These mutants are infectious and replicate to high levels in cell culture. In parallel, we adapted and optimized the selective permeabilization and mPEG labeling techniques to Huh-7 human hepatocellular carcinoma cells which can support HCV infection and replication. CONCLUSIONS: The newly established experimental tools and techniques should allow us to refine the membrane topology of HCV NS4B in a physiological context. The expected results should enhance our understanding of the functional architecture of the HCV replication complex and may provide new opportunities for antiviral intervention in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copy-number variants (CNVs) represent a significant interpretative challenge, given that each CNV typically affects the dosage of multiple genes. Here we report on five individuals with coloboma, microcephaly, developmental delay, short stature, and craniofacial, cardiac, and renal defects who harbor overlapping microdeletions on 8q24.3. Fine mapping localized a commonly deleted 78 kb region that contains three genes: SCRIB, NRBP2, and PUF60. In vivo dissection of the CNV showed discrete contributions of the planar cell polarity effector SCRIB and the splicing factor PUF60 to the syndromic phenotype, and the combinatorial suppression of both genes exacerbated some, but not all, phenotypic components. Consistent with these findings, we identified an individual with microcephaly, short stature, intellectual disability, and heart defects with a de novo c.505C>T variant leading to a p.His169Tyr change in PUF60. Functional testing of this allele in vivo and in vitro showed that the mutation perturbs the relative dosage of two PUF60 isoforms and, subsequently, the splicing efficiency of downstream PUF60 targets. These data inform the functions of two genes not associated previously with human genetic disease and demonstrate how CNVs can exhibit complex genetic architecture, with the phenotype being the amalgam of both discrete dosage dysfunction of single transcripts and also of binary genetic interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HeCo mouse model is characterized by a subcortical heterotopia formed by misplaced neurons normally migrating into the superficial cortical layers. The mutant mouse has a tendency to epileptic seizures. In my thesis project we discovered the mutated Eml1 gene, a member of the echinoderm microtubule-associated protein (EMAP) family, in HeCo as well as in a family of three children showing complex malformation of cortical development. This discovery formed an important step in exploring the pathogenic mechanisms underlying the HeCo phenotype. In vitro results showed that during cell division the EML1 protein is associated with the midbody and a mutated version of Eml1 highlighted an important role of the protein in the astral MT array during cell cycle. In vivo, we found that already at an early age of cortical development (E13), ectopic progenitors such as RGs (PAX6) and IPCs (TBR2) accumulate in the IZ along the entire neocortex. We demonstrated that in the VZ of the HeCo mouse, spindle orientation and cell cycle exit are perturbed. In later stages (E17), RG fibers are strongly disorganized with deep layer (TBR1) and upper layer (CUX1) neurons trapped within an ectopic mass. At P3, columns of upper layer neurons were present between the heterotopia and the developing cortex; these columns were also present at P7 but at lesser extent. Time lapse video recording (E15.5) revealed that the parameters characterizing the migration of individual neurons are not disturbed in HeCo; however, this analysis showed that the density of migrating neuron was smaller in HeCo. In conclusion, truncated EML1 is likely to play a prominent role during cell cycle but also acts on the cytoskeletal architecture altering the shape of RG fibers thus influencing the pattern of neuronal migration. The signal transduction between external cues and intracellular effector pathways through MTs may be secondary but sustains the heterotopia development and further studies are needed to clarify the impact of EML1 in progenitors versus post-mitotic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Courtyard houses are attested at several sites in southern Gaul between the 5th and the 1st centuries BC. They represent a new concept when compared to the traditional protohistoric houses of the region and have often been interpreted in terms of Mediterranean, Greek or Italic influences. Regardless of their origin, exogenous influences or evolution, these houses suggest the emergence of social differentiation and elites in several of the main settlements. This article analyses the significance of the various courtyard house categories in the context of local, indigenous societies, while trying to understand the social implications of this new type of residence. In a wider context, the development of domestic architecture during the Iron Age is analysed alongside the relationships between changing uses of space and social changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. It induces a specific membrane rearrangement, designated membranous web, that serves as a scaffold for the HCV replication complex. However, the mechanisms underlying membranous web formation are poorly understood. Based on fluorescence resonance energy transfer (FRET) and confirmatory coimmunoprecipitation analyses, we provide evidence for an oligomerization of NS4B in the membrane environment of intact cells. Several conserved determinants were found to be involved in NS4B oligomerization, through homotypic and heterotypic interactions. N-terminal amphipathic ?-helix AH2, comprising amino acids 42 to 66, was identified as a major determinant for NS4B oligomerization. Mutations that affected the oligomerization of NS4B disrupted membranous web formation and HCV RNA replication, implying that oligomerization of NS4B is required for the creation of a functional replication complex. These findings enhance our understanding of the functional architecture of the HCV replication complex and may provide new angles for therapeutic intervention. At the same time, they expand the list of positive-strand RNA virus replicase components acting as oligomers.