796 resultados para Aramid fiber. Glass fiber. Composite polymeric. Hybrid. Technical fabric


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rheological characteristics of short Nylon-6 fiber-reinforced Styrene Butadiene rubber (SBR) in the presence of epoxy resin-based bonding agent were studied with respect to the effect of shear rate, fiber concentration , and temperature on shear viscosity and die swell using a capillary rheonzeter. All the composites containing bonding agent showed a pseudoplastic nature, which decreased with increasing temperature. Shear viscosity was increased in the presence of fibers. The temperature sensitivity of the SBR matrices was reduced on introduction of fibers. The temperature sensitivity of the melts was found to be lower at higher shear rates. Die swell was reduced in the presence of fibers. Relative viscosity of the composites increased with shear rate. In the presence of epoxy resin bonding agent the temperature sensitivity of the mixes increased. Die swell was larger in the presence of bonding agent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cure characteristics and mechanical properties of short nylon fiber reinforced acrylonitrile butadiene rubber-reclaimed rubber composites were studied. Minimum torque, (maximum-minimum) torque and cure rate increased with fiber concentration. Scorch time and cure time decreased by the addition of fibers. Properties like tensile strength, tear strength, elongation at break, abrasion loss and heat build up were studied in both orientations of fibers. Tensile and tear properties were enhanced by the addition of fibers and were higher in the longitudinal direction. Heat build up increased with fiber concentration and were higher in the longitudinal direction. Abrasion resistance was improved in presence of short fibers and was higher in the longitudinal direction. Resilience increased on the introduction of fibers. Compression set was higher for blends.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rheological behavior of a short-polyester-fiber-filled polyurethane elastomer composite containing different bonding agents has been studied in the temperature range 120-160°C and in the shear rate range 63-608 s-'. The composite with and without bonding agents showed a pseudoplastic behavior which decreased with the increase of temperature. Composites containing bonding agents based on polypropyleneglycol and 4,4'-diphenylmethanediisocyanate showed the lowest viscosity values at a particular shear rate, whereas composites containing a glycerol- (GL) based bonding agent showed the highest viscosity. The viscosity of the composite decreased sharply after a particular temperature (140°C) and the fall was less drastic in the composite containing a GL-based bonding agent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The stress relaxation behavior of polyurethane elastomer and short polyester fiber filled elastomer composites with and without bonding agents at different strain levels and strain rates was studied. It was found that these compounds exhibit a multistage relaxation mechanism and that the rate of relaxation and cross-over time depend on the strain level and strain rate. The incorporation of fibers reduced the stage-I relaxation rate and increased the cross-over time of the gum vulcanisate. A higher rate of relaxation (first stage) was shown by the composites with longitudinal fiber orientation and composites with bonding agents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermal degradation of short polyester fiber reinforced polyurethane composites with and without different bonding agents has been studied by thermogravimetric analysis . It was found that degradation of the polyurethane takes place in two steps and that of the composites takes place in three steps. With the incorporation of 30 phr of fiber in the matrix , the onset of degradation was shifted from 230 to 238 ° C. The presence of bonding agents in the virgin elastomer and the composite gave an improved thermal stability . Results of kinetic studies showed that the degradation of polyurethane and the reinforced composites with and without bonding agents follows first -order reaction kinetics

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(propylene) (PP) reinforced with short glass fiber was modified with precipitated nanosilica (pnS) by melt mixing. The weight of the glass fiber was varied by keeping the pnS at optimum level. The properties of the composites were studied using universal testing machine, dynamic mechanic analyser (DMA), differential Scanning calorimetry (DSC) and thermo gravimetric analyser (TGA). The amount of the glass fiber required for a particular modulus could be reduced by the addition of nanosilica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The search for new materials especially those possessing special properties continues at a great pace because of ever growing demands of the modern life. The focus on the use of intrinsically conductive polymers in organic electronic devices has led to the development of a totally new class of smart materials. Polypyrrole (PPy) is one of the most stable known conducting polymers and also one of the easiest to synthesize. In addition, its high conductivity, good redox reversibility and excellent microwave absorbing characteristics have led to the existence of wide and diversified applications for PPy. However, as any conjugated conducting polymer, PPy lacks processability, flexibility and strength which are essential for industrial requirements. Among various approaches to making tractable materials based on PPy, incorporating PPy within an electrically insulating polymer appears to be a promising method, and this has triggered the development of blends or composites. Conductive elastomeric composites of polypyrrole are important in that they are composite materials suitable for devices where flexibility is an important parameter. Moreover these composites can be moulded into complex shapes. In this work an attempt has been made to prepare conducting elastomeric composites by the incorporation of PPy and PPy coated short Nylon-6 fiber with insulating elastomer matrices- natural rubber and acrylonitrile butadiene rubber. It is well established that mechanical properties of rubber composites can be greatly improved by adding short fibers. Generally short fiber reinforced rubber composites are popular in industrial fields because of their processing advantages, low cost, and their greatly improved technical properties such as strength, stiffness, modulus and damping. In the present work, PPy coated fiber is expected to improve the mechanical properties of the elastomer-PPy composites, at the same time increasing the conductivity. In addition to determination of DC conductivity and evaluation of mechanical properties, the work aims to study the thermal stability, dielectric properties and electromagnetic interference shielding effectiveness of the composites. The thesis consists of ten chapters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work presented in this thesis is regarding the development and evaluation of new bonding agents for short polyester fiber - polyurethane elastomer composites. The conventional bonding system based on hexamethylenetetramine, resorcinol and hydrated silica was not effective as a bonding agent for the composite, as the water eliminated during the formation of the RF resin hydrolysed the urethane linkages. Four bonding agents based on MDI/'I‘DI and polypropyleneglycol, propyleneglycol and glycerol were prepared and the composite recipe was optimised with respect to the cure characteristics and mechanical properties. The flow properties, stress relaxation pattern and the thermal degradation characteristics of the composites containing different bonding agents were then studied in detail to evaluate the new bonding systems. The optimum loading of resin was 5 phr and the ratio of the -01 to isocyanate was 1:1. The cure characteristics showed that the optimum combination of cure rate and processability was given by the composite with the resin based on polypropyleneglycol/ glycerol/ 4,4’diphenylmethanediisocynate (PPG/GL/MDI). From the rheological studies of the composites with and without bonding agents it was observed that all the composites showed pseudoplastic nature and the activation energy of flow of the composite was not altered by the presence of bonding agents. Mechanical properties such as tensile strength, modulus, tear resistance and abrasion resistance were improved in the presence of bonding agents and the effect was more pronounced in the case of abrasion resistance. The composites based on MDI/GL showed better initial properties while composites with resins based on MDI/PPG showed better aging resistance. Stress relaxation showed a multistage relaxation behaviour for the composite. Within the-strain levels studied, the initial rate of relaxation was higher and the cross over time was lesser for the composite containing bonding agents. The bonding agent based on MDI/PPG/GL was found to be a better choice for improving stress relaxation characteristics with better interfacial bonding. Thennogravimetirc analysis showed that the presence of fiber and bonding agents improved the thennal stability of the polyurethane elastomer marginally and it was maximum in the case of MDI / GL based bonding agents. The kinetics of degradation was not altered by the presence of bonding agents

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effectiveness of different light-curing units on the bond strength (push-out) of glass fiber posts in the different thirds of the root (cervical, middle and apical) with different adhesive luting resin systems (dual-cure total-etch; dual-cured and self-etch bonding system; and dual-cure self-adhesive cements), Disks of the samples (n = 144) were used, with approximately 1 mm of thickness of 48 bovine roots restored with glass fiber posts, that were luted with resin cements photo-activated by halogen LCU (QTH, Optilux 501) and blue LED (Ultraled), with power densities of 600 and 550 mW/cm(2), respectively. A universal testing machine (MTS 810 Material Test System) was used with a 1 mm diameter steel rod at cross-head speed of 0.5 mm/min until post extrusion, with load cell of 50 kg, for evaluation of the push-out strength in the different thirds of each sample. The push-out strength values in kgf were converted to MPa and analyzed through Analysis of Variance and Tukey`s test, at significance level of 5%. The results showed that there were no statistical differences between the QTH and LED LCUs. The self-adhesive resin cement had lower values of retention. The total-etch and self-adhesive system resin cements seem to be a possible alternative for glass fiber posts cementation into the radicular canal and the LED LCU can be applied as an alternative to halogen light on photo-activation of dual-cured resin cements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research is about the use of the coconut´s endocarp (nucifera linn) and the waste of derivatives of wood and furniture as raw material to technological use. In that sense, the lignocellulosic waste is used for manufacture of homogeneous wood sheet agglomerate (LHWS) and lignocellulosic load which take part of a polymeric composite with fiber glass E (GFRP-WC). In the manufacturing of the homogeneous wood sheet agglomerate (LHWS), it was used mamona´s resin as waste s agglutinating element. The plates were taken up in a hydraulic press engine, heated, with temperature control, where they were manufactured for different percentage of waste wood and coconuts nucífera linn. Physical tests were conducted to determine the absorption of water, density, damp grade (in two hours and twenty-four hours), swelling thickness (in two hours and twenty-four hours), and mechanical tests to evaluate the parallel tensile strength (internal stick) and bending and the static (steady) flexural. The physical test´s results indicate that the LHWS can be classified as bonded wood plate of high-density and with highly water resistant. In the mechanical tests it was possible to establish that LHWS presents different characteristics when submitted to uniaxial tensile and to the static (steady) flexural, since brittle and elasticity module had a variation according to the amount of dry endocarp used to manufacture each trace of LHWS. The GFRP-WC was industrially manufactured by a hand-lay-up process where the fiber glass E was used as reinforcement the lignocellulósic´s waste as load. The matrix was made with ortofitalic unsaturated polyester resin. Physical and mechanical tests were performed in presence of saturated humidity and dry. The results indicated good performance of the GFRP-WC, as traction as in flexion in three points. The presence of water influenced the modules obtained in the flexural and tensile but there were no significant alteration in the properties analyzed. As for the fracture, the analysis showed that the effects are more harmful in the presence of damp, under the action of loading tested, but despite this, the fracture was well defined starting in the external parts and spreading to the internal regions when one when it reaches the hybrid load

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The gradual replacement of conventional materials by the ones called composite materials is becoming a concern about the response of these composites against adverse environmental conditions, such as ultraviolet radiation, high temperature and moist. Also the search for new composite using natural fibers or a blend of it with synthetic fibers as reinforcement has been studied. In this sense, this research begins with a thorough study of microstructural characterization of licuri fiber, as a proposal of alternative reinforcement to polymeric composites. Thus, a study about the development of two composite laminates was done. The first one, involving only the fiber of licuri and the second comprising a hybrid composite based of fiber glass E and the fiber of licuri, in order to know the performance of the fiber when of fiber across the hybridization process. The laminates were made in the form of plates using the tereftálica ortho-polyester resin as matrix. The composite laminate made only by licuri fiber had two reinforcing fabric layers of unidirectional licuri and the hybrid composite had two reinforcing layers of unidirectional licuri fabric and three layers of fiber short glass-E mat. Finally, both laminates was exposed to aging acceleration in order to study the influence of environmental degradation involving the mechanical properties and fracture characteristics thereof. Regarding the mechanical properties of composites, these were determined through uniaxial tensile tests, uniaxial compression and three bending points for both laminates in original state, and uniaxial tensile tests and three bending points after accelerated aging. As regards the study of structural degradation due to aging of the laminates, it was carried out based on microscopic analysis and microstructure, as well as measuring weight loss. The characteristics of the fracture was performed by macroscopic and microscopic (optical and SEM) analysis. In general, the laminated composites based on fiber licuri showed some advantages in their responses to environmental aging. These advantages are observed in the behavior related to stiffness as well as the microstructural degradation and photo-oxidation processes. However, the structural integrity of this laminate was more affected in case the action of uniaxial tensile loads, where it was noted a lower rate of withholding his last resistance property

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of thermal-shock cycles on the mechanical properties of fiber-metal laminates (FMLs) has been evaluated. FML plates were composed by two AA2024 Al sheets (1.6 mm thick) and one composite ply formed by two layers of unidirectional glass fiber epoxy prepreg and two layers of epoxy adhesive tape of glass fiber reinforced epoxy adhesive. The set was manufactured by hand layup and typical vacuum bag technique. The curing cycle was in autoclave at 125 +/- 5 degrees C for 90 min and an autoclave pressure of 400 kPa. FML coupons taken from the manufactured plate were submitted to temperature variations between -50 and +80 degrees C, with a fast transition between these temperatures. Tensile and interlaminar shear strength were evaluated on samples after 1000 and 2000 cycles, and compared to nonexposed samples. 2000 Cycles corresponds to typical C Check interval for commercial aircraft maintenance programs. It was observed that the thermal-shock cycles did not result in significant microstructural changes on the FML, particularly on the composite ply. Similarly, no appreciable effect on the mechanical properties of FML was observed by the thermal-shock cycles. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fiber reinforced polymer composites have been widely applied in the aeronautical field. However, composite processing, which uses unlocked molds, should be avoided in view of the tight requirements and also due to possible environmental contamination. To produce high performance structural frames meeting aeronautical reproducibility and low cost criteria, the Brazilian industry has shown interest to investigate the resin transfer molding process (RTM) considering being a closed-mold pressure injection system which allows faster gel and cure times. Due to the fibrous composite anisotropic and non homogeneity characteristics, the fatigue behavior is a complex phenomenon quite different from to metals materials crucial to be investigated considering the aeronautical application. Fatigue sub-scale specimens of intermediate modulus carbon fiber non-crimp multi-axial reinforcement and epoxy mono-component system composite were produced according to the ASTM 3039 D. Axial fatigue tests were carried out according to ASTM D 3479. A sinusoidal load of 10 Hz frequency and load ratio R = 0.1. It was observed a high fatigue interval obtained for NCF/RTM6 composites. Weibull statistical analysis was applied to describe the failure probability of materials under cyclic loads and fractures pattern was observed by scanning electron microscopy. (C) 2010 Published by Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)