957 resultados para Aquatic environment


Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has long been known that cholera outbreaks can be initiated when Vibrio cholerae, the bacterium that causes cholera, is present in drinking water in sufficient numbers to constitute an infective dose, if ingested by humans. Outbreaks associated with drinking or bathing in unpurified river or brackish water may directly or indirectly depend on such conditions as water temperature, nutrient concentration, and plankton production that may be favorable for growth and reproduction of the bacterium. Although these environmental parameters have routinely been measured by using water samples collected aboard research ships, the available data sets are sparse and infrequent. Furthermore, shipboard data acquisition is both expensive and time-consuming. Interpolation to regional scales can also be problematic. Although the bacterium, V. cholerae, cannot be sensed directly, remotely sensed data can be used to infer its presence. In the study reported here, satellite data were used to monitor the timing and spread of cholera. Public domain remote sensing data for the Bay of Bengal were compared directly with cholera case data collected in Bangladesh from 1992–1995. The remote sensing data included sea surface temperature and sea surface height. It was discovered that sea surface temperature shows an annual cycle similar to the cholera case data. Sea surface height may be an indicator of incursion of plankton-laden water inland, e.g., tidal rivers, because it was also found to be correlated with cholera outbreaks. The extensive studies accomplished during the past 25 years, confirming the hypothesis that V. cholerae is autochthonous to the aquatic environment and is a commensal of zooplankton, i.e., copepods, when combined with the findings of the satellite data analyses, provide strong evidence that cholera epidemics are climate-linked.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complete genome sequence of Caulobacter crescentus was determined to be 4,016,942 base pairs in a single circular chromosome encoding 3,767 genes. This organism, which grows in a dilute aquatic environment, coordinates the cell division cycle and multiple cell differentiation events. With the annotated genome sequence, a full description of the genetic network that controls bacterial differentiation, cell growth, and cell cycle progression is within reach. Two-component signal transduction proteins are known to play a significant role in cell cycle progression. Genome analysis revealed that the C. crescentus genome encodes a significantly higher number of these signaling proteins (105) than any bacterial genome sequenced thus far. Another regulatory mechanism involved in cell cycle progression is DNA methylation. The occurrence of the recognition sequence for an essential DNA methylating enzyme that is required for cell cycle regulation is severely limited and shows a bias to intergenic regions. The genome contains multiple clusters of genes encoding proteins essential for survival in a nutrient poor habitat. Included are those involved in chemotaxis, outer membrane channel function, degradation of aromatic ring compounds, and the breakdown of plant-derived carbon sources, in addition to many extracytoplasmic function sigma factors, providing the organism with the ability to respond to a wide range of environmental fluctuations. C. crescentus is, to our knowledge, the first free-living α-class proteobacterium to be sequenced and will serve as a foundation for exploring the biology of this group of bacteria, which includes the obligate endosymbiont and human pathogen Rickettsia prowazekii, the plant pathogen Agrobacterium tumefaciens, and the bovine and human pathogen Brucella abortus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An investigation of stable isotope (d13C TOC and d15N TN) and elemental parameters (TOC, TN contents and TOC/TN ratios) of bulk organic matter (<200 µm) from sediment cores recovered from the Patagonian lake Laguna Potrok Aike (Argentina) in the framework of the ICDP deep drilling project PASADO provided insights into past changes in lake primary productivity and environmental conditions in South Patagonia throughout the last Glacial-Interglacial transition. Stratigraphically constrained cluster analyses of all proxy parameters suggest four main phases. From ca 26,100 to 17,300 cal. years BP, lacustrine phytoplankton was presumably the predominant organic matter source in an aquatic environment with low primary productivity rates. At around 17,300 cal. years BP, abrupt and distinct shifts of isotopic and elemental values indicate that the lacustrine system underwent a rapid reorganization. Lake primary productivity (phytoplankton and aquatic macrophytes) shows higher levels albeit with large variations during most of the deglaciation until 13,000 cal. years BP. The main causes for this development can be seen in improved growing conditions for primary producers because of deglacial warming in combination with expedient availability of nutrients and likely calm wind conditions. After 13,000 cal. years BP, decreased d13C TOC values, TOC, TN contents and TOC/TN ratios indicate that the lake approached a new state with reduced primary productivity probably induced by unfavourable growing conditions for primary producers like strengthened winds and reduced nutrient availability. The steady increase in d15N TN values presumably suggests limitation of nitrate supply for growth of primary producers resulting from a nutrient shortage after the preceding phase with high productivity. Nitrate limitation and consequent decreased lacustrine primary productivity continued into the early Holocene (10,970-8400 cal. years BP) as reflected by isotopic and elemental values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In previous Statnotes, many of the statistical tests described rely on the assumption that the data are a random sample from a normal or Gaussian distribution. These include most of the tests in common usage such as the ‘t’ test ), the various types of analysis of variance (ANOVA), and Pearson’s correlation coefficient (‘r’) . In microbiology research, however, not all variables can be assumed to follow a normal distribution. Yeast populations, for example, are a notable feature of freshwater habitats, representatives of over 100 genera having been recorded . Most common are the ‘red yeasts’ such as Rhodotorula, Rhodosporidium, and Sporobolomyces and ‘black yeasts’ such as Aurobasidium pelculans, together with species of Candida. Despite the abundance of genera and species, the overall density of an individual species in freshwater is likely to be low and hence, samples taken from such a population will contain very low numbers of cells. A rare organism living in an aquatic environment may be distributed more or less at random in a volume of water and therefore, samples taken from such an environment may result in counts which are more likely to be distributed according to the Poisson than the normal distribution. The Poisson distribution was named after the French mathematician Siméon Poisson (1781-1840) and has many applications in biology, especially in describing rare or randomly distributed events, e.g., the number of mutations in a given sequence of DNA after exposure to a fixed amount of radiation or the number of cells infected by a virus given a fixed level of exposure. This Statnote describes how to fit the Poisson distribution to counts of yeast cells in samples taken from a freshwater lake.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The goal of mangrove restoration projects should be to improve community structure and ecosystem function of degraded coastal landscapes. This requires the ability to forecast how mangrove structure and function will respond to prescribed changes in site conditions including hydrology, topography, and geophysical energies. There are global, regional, and local factors that can explain gradients of regulators (e.g., salinity, sulfides), resources (nutrients, light, water), and hydroperiod (frequency, duration of flooding) that collectively account for stressors that result in diverse patterns of mangrove properties across a variety of environmental settings. Simulation models of hydrology, nutrient biogeochemistry, and vegetation dynamics have been developed to forecast patterns in mangroves in the Florida Coastal Everglades. These models provide insight to mangrove response to specific restoration alternatives, testing causal mechanisms of system degradation. We propose that these models can also assist in selecting performance measures for monitoring programs that evaluate project effectiveness. This selection process in turn improves model development and calibration for forecasting mangrove response to restoration alternatives. Hydrologic performance measures include soil regulators, particularly soil salinity, surface topography of mangrove landscape, and hydroperiod, including both the frequency and duration of flooding. Estuarine performance measures should include salinity of the bay, tidal amplitude, and conditions of fresh water discharge (included in the salinity value). The most important performance measures from the mangrove biogeochemistry model should include soil resources (bulk density, total nitrogen, and phosphorus) and soil accretion. Mangrove ecology performance measures should include forest dimension analysis (transects and/or plots), sapling recruitment, leaf area index, and faunal relationships. Estuarine ecology performance measures should include the habitat function of mangroves, which can be evaluated with growth rate of key species, habitat suitability analysis, isotope abundance of indicator species, and bird census. The list of performance measures can be modified according to the model output that is used to define the scientific goals during the restoration planning process that reflect specific goals of the project.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An automated on-line SPE-LC-MS/MS method was developed for the quantitation of multiple classes of antibiotics in environmental waters. High sensitivity in the low ng/L range was accomplished by using large volume injections with 10-mL of sample. Positive confirmation of analytes was achieved using two selected reaction monitoring (SRM) transitions per antibiotic and quantitation was performed using an internal standard approach. Samples were extracted using online solid phase extraction, then using column switching technique; extracted samples were immediately passed through liquid chromatography and analyzed by tandem mass spectrometry. The total run time per each sample was 20 min. The statistically calculated method detection limits for various environmental samples were between 1.2 and 63 ng/L. Furthermore, the method was validated in terms of precision, accuracy and linearity. ^ The developed analytical methodology was used to measure the occurrence of antibiotics in reclaimed waters (n=56), surface waters (n=53), ground waters (n=8) and drinking waters (n=54) collected from different parts of South Florida. In reclaimed waters, the most frequently detected antibiotics were nalidixic acid, erythromycin, clarithromycin, azithromycin trimethoprim, sulfamethoxazole and ofloxacin (19.3-604.9 ng/L). Detection of antibiotics in reclaimed waters indicates that they can't be completely removed by conventional wastewater treatment process. Furthermore, the average mass loads of antibiotics released into the local environment through reclaimed water were estimated as 0.248 Kg/day. Among the surface waters samples, Miami River (reaching up to 580 ng/L) and Black Creek canal (up to 124 ng/L) showed highest concentrations of antibiotics. No traces of antibiotics were found in ground waters. On the other hand, erythromycin (monitored as anhydro erythromycin) was detected in 82% of the drinking water samples (n.d-66 ng/L). The developed approach is suitable for both research and monitoring applications.^ Major metabolites of antibiotics in reclaimed wates were identified and quantified using high resolution benchtop Q-Exactive orbitrap mass spectrometer. A phase I metabolite of erythromycin was tentatively identified in full scan based on accurate mass measurement. Using extracted ion chromatogram (XIC), high resolution data-dependent MS/MS spectra and metabolic profiling software the metabolite was identified as desmethyl anhydro erythromycin with molecular formula C36H63NO12 and m/z 702.4423. The molar concentration of the metabolite to erythromycin was in the order of 13 %. To my knowledge, this is the first known report on this metabolite in reclaimed water. Another compound acetyl-sulfamethoxazole, a phase II metabolite of sulfamethoxazole was also identified in reclaimed water and mole fraction of the metabolite represent 36 %, of the cumulative sulfamethoxazole concentration. The results were illustrating the importance to include metabolites also in the routine analysis to obtain a mass balance for better understanding of the occurrence, fate and distribution of antibiotics in the environment. ^ Finally, all the antibiotics detected in reclaimed and surface waters were investigated to assess the potential risk to the aquatic organisms. The surface water antibiotic concentrations that represented the real time exposure conditions revealed that the macrolide antibiotics, erythromycin, clarithromycin and tylosin along with quinolone antibiotic, ciprofloxacin were suspected to induce high toxicity to aquatic biota. Preliminary results showing that, among the antibiotic groups tested, macrolides posed the highest ecological threat, and therefore, they may need to be further evaluated with, long-term exposure studies considering bioaccumulation factors and more number of species selected. Overall, the occurrence of antibiotics in aquatic environment is posing an ecological health concern.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reservoirs are artificial ecosystems intermediate between rivers and lakes widely used in the Brazilian semiarid region as a way to provide water supply due to the said region’s water scarcity. The use of water from these supply sources for multiple uses, along with occupation and utilization of its riparian zone without proper management, directly influences the increased nutrient flow into aquatic environments, there with contributing to the acceleration of eutrophication. The semi-arid region is characterized by peculiar weather conditions, such as severe evaporation, high temperatures with little variation throughout the year and long water residence time, making it susceptible to prolonged drought occurrence, which tends to concentrate the nutrients in reservoirs, which favors the development of eutrophic conditions. Moreover, it is common soil use and occupation by carrying out activities with potential environmental impact on natural resources such as agriculture, livestock farming and lack of sanitation. The aim of this study is both to evaluate the water quality of the Cruzeta Reservoir, located in the semiarid region of Rio Grande do Norte, during a prolonged drought period, and assess the quality of its riparian zone soil under different uses, by monitoring physical-chemical variables. Along the prolonged drought, high levels of turbidity, suspended solids, nutrients and chlorophyll a were verified as present, therefore featuring low water quality. In the riparian zone of Cruzeta Reservoir, the areas under use of agriculture and livestock farming appeared as one of the main diffuse sources of nutrients to the said reservoir, featuring the highest levels of phosphorus and nitrogen in the soil, originated from decomposition of animal excreta and from the use of fertilizers, creating a tendency to increased eutrophication of such water supply source. The indicators of water and soil quality are useful for monitoring and evaluating the conservation status of natural resources, allowing the control and mitigation of the reservoir eutrophication process. This study confirmed the hypothesis that the reduction of water level, resulting from prolonged drought event, aggravates the symptoms of eutrophication; and also that using the soil under severalways modifies the physic chemical properties of the soil, having livestock farming and agriculture as the usages with greatest potential towards yielding P and N to the aquatic environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human activities represent a significant burden on the global water cycle, with large and increasing demands placed on limited water resources by manufacturing, energy production and domestic water use. In addition to changing the quantity of available water resources, human activities lead to changes in water quality by introducing a large and often poorly-characterized array of chemical pollutants, which may negatively impact biodiversity in aquatic ecosystems, leading to impairment of valuable ecosystem functions and services. Domestic and industrial wastewaters represent a significant source of pollution to the aquatic environment due to inadequate or incomplete removal of chemicals introduced into waters by human activities. Currently, incomplete chemical characterization of treated wastewaters limits comprehensive risk assessment of this ubiquitous impact to water. In particular, a significant fraction of the organic chemical composition of treated industrial and domestic wastewaters remains uncharacterized at the molecular level. Efforts aimed at reducing the impacts of water pollution on aquatic ecosystems critically require knowledge of the composition of wastewaters to develop interventions capable of protecting our precious natural water resources.

The goal of this dissertation was to develop a robust, extensible and high-throughput framework for the comprehensive characterization of organic micropollutants in wastewaters by high-resolution accurate-mass mass spectrometry. High-resolution mass spectrometry provides the most powerful analytical technique available for assessing the occurrence and fate of organic pollutants in the water cycle. However, significant limitations in data processing, analysis and interpretation have limited this technique in achieving comprehensive characterization of organic pollutants occurring in natural and built environments. My work aimed to address these challenges by development of automated workflows for the structural characterization of organic pollutants in wastewater and wastewater impacted environments by high-resolution mass spectrometry, and to apply these methods in combination with novel data handling routines to conduct detailed fate studies of wastewater-derived organic micropollutants in the aquatic environment.

In Chapter 2, chemoinformatic tools were implemented along with novel non-targeted mass spectrometric analytical methods to characterize, map, and explore an environmentally-relevant “chemical space” in municipal wastewater. This was accomplished by characterizing the molecular composition of known wastewater-derived organic pollutants and substances that are prioritized as potential wastewater contaminants, using these databases to evaluate the pollutant-likeness of structures postulated for unknown organic compounds that I detected in wastewater extracts using high-resolution mass spectrometry approaches. Results showed that application of multiple computational mass spectrometric tools to structural elucidation of unknown organic pollutants arising in wastewaters improved the efficiency and veracity of screening approaches based on high-resolution mass spectrometry. Furthermore, structural similarity searching was essential for prioritizing substances sharing structural features with known organic pollutants or industrial and consumer chemicals that could enter the environment through use or disposal.

I then applied this comprehensive methodological and computational non-targeted analysis workflow to micropollutant fate analysis in domestic wastewaters (Chapter 3), surface waters impacted by water reuse activities (Chapter 4) and effluents of wastewater treatment facilities receiving wastewater from oil and gas extraction activities (Chapter 5). In Chapter 3, I showed that application of chemometric tools aided in the prioritization of non-targeted compounds arising at various stages of conventional wastewater treatment by partitioning high dimensional data into rational chemical categories based on knowledge of organic chemical fate processes, resulting in the classification of organic micropollutants based on their occurrence and/or removal during treatment. Similarly, in Chapter 4, high-resolution sampling and broad-spectrum targeted and non-targeted chemical analysis were applied to assess the occurrence and fate of organic micropollutants in a water reuse application, wherein reclaimed wastewater was applied for irrigation of turf grass. Results showed that organic micropollutant composition of surface waters receiving runoff from wastewater irrigated areas appeared to be minimally impacted by wastewater-derived organic micropollutants. Finally, Chapter 5 presents results of the comprehensive organic chemical composition of oil and gas wastewaters treated for surface water discharge. Concurrent analysis of effluent samples by complementary, broad-spectrum analytical techniques, revealed that low-levels of hydrophobic organic contaminants, but elevated concentrations of polymeric surfactants, which may effect the fate and analysis of contaminants of concern in oil and gas wastewaters.

Taken together, my work represents significant progress in the characterization of polar organic chemical pollutants associated with wastewater-impacted environments by high-resolution mass spectrometry. Application of these comprehensive methods to examine micropollutant fate processes in wastewater treatment systems, water reuse environments, and water applications in oil/gas exploration yielded new insights into the factors that influence transport, transformation, and persistence of organic micropollutants in these systems across an unprecedented breadth of chemical space.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho obtém-se uma solução analítica para a equação de advecção-difusão aplicada a problemas de dispersão de poluentes em rios e canais. Para tanto, consideram-se os casos unidimensionais e bidimensionais em regime transiente com coeficientes de difusividade e velocidades constantes. A abordagem utilizada para a resolução deste problema é o método de Separação de Variáveis. Os modelos resolvidos foram simulados utilizando o MatLab. Apresentam-se os resultados das simulações numéricas em formato gráfico. Os resultados de algumas simulações numéricas existem na literatura e puderam ser comparados. O modelo proposto mostrou-se coerente em relação aos dados considerados. Para outras simulações não foram encontrados comparativos na literatura, todavia esses problemas governados por equações diferenciais parciais, mesmo lineares, não são de fácil solução analítica. Sendo que, muitas delas representam importantes problemas de matemática e física, com diversas aplicações na engenharia. Dessa forma, é de grande importância a disponibilidade de um maior número de problemas-teste para avaliação de desempenho de formulações numéricas, cada vez mais eficazes, já que soluções analíticas oferecem uma base mais segura para comparação de resultados.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A multi-residue gas chromatography-mass spectrometry method was developed in order to evaluate the presence of 39 pesticides of different chemical families (organophosphorus, triazines, imidazole, organochlorine), as well as some of their transformation products, in surface water samples from Ria de Aveiro. Ria de Aveiro is an estuarine coastal lagoon, located in the northern west region of Portugal, which receives inputs from agriculture, urban and industrial activities. The analytical method was developed and validated according international guidelines and showed good linearity, with correlation coefficients higher than 0.9949 for all compounds, adequate precision and accuracy, and high sensitivity. Pesticides were chosen from the priority pollutants list of the Directive 2008/105/EC of the European Parliament and of the Council (on environmental quality standards in the field of water policy), or were selected due their common use in agricultural practices. Some of these 39 pesticides are, or are suspected to be, endocrine disruptor compounds (EDCs), being capable of altering the endocrine system of wildlife and humans, causing form malfunction and ultimately health problems. Even those pesticides which are not EDCs, are known to be awfully toxic and have a recognised impact in human health. The aquatic environment is particularly susceptible to pollution due to intentional and accidental release of chemicals to water [3]. Pesticide contamination of surface water is a national issue as it is often used as drinking water. This concern is especially important in rural agricultural areas where population uses small private water supplies, regularly without any laboratory surveillance. The study was performed in seven sampling points and the results showed a considerable concern pesticide contamination of all samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the formulation of policies, laws and regulations for management of fisheries and aquatic systems there is a requirement for scientific knowledge to guide in this formulation. Such knowledge is used to guide in sustainable management of capture fisheries, integrating lake productivity processes into fisheries management, prevention of pollution and eutrophication of the aquatic environment, control of invasive weeds e.g. water hyacinth, enhancement of aquaculture production, reduction of post-harvest fish losses and ensuring fish quality, development of options for optimization of socio-economic benefits from fisheries and for co-management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A produção mundial de nanomateriais tem aumentado nos últimos anos, em função de suas variadas aplicações tecnológicas e, como consequência do seu crescente uso e demanda, poderão existir riscos ambientais sendo a água o ambiente onde muitas destas substâncias podem exercer efeitos deletérios. Um dos nanomaterias de carbono mais utilizados é o fulereno, um composto orgânico lipofílico que pode se comportar como carreador de moléculas tóxicas, potencializando a entrada de contaminantes ambientais em órgãos específicos, fenômeno conhecido como “cavalo de Troia”. As microcistinas (MC) são cianotoxinas produzidas por cianobactérias durante episódios de floração, afetando aos organismos aquáticos e ao ser humano. Diversos estudos demonstram que organismos expostos tanto às MCs quanto ao fulereno podem causar produção excessiva de espécies ativas de oxigênio e alterar os níveis de antioxidantes. Além disso, outro fator que pode vir a intensificar o potencial tóxico de ambos é a incidência de radiação UVA. Sendo assim, procurou-se avaliar os efeitos em parâmetros de estresse oxidativo da co-exposição ex vivo da cianotoxina microcistina-LR (MC-LR) e o nanomaterial de carbono fulereno em brânquias do peixe Cyprinus carpio sob incidência de radiação UVA. Os resultados mostraram que: (a) houve uma perda da capacidade antioxidante no tratamento com MC-LR (baixa concentração) quando coexposta com fulereno no UVA em relação com o tratamento realizado sem co-exposição com fulereno; (b) o fulereno no UV diminuiu a atividade da enzima glutationa-Stransferase (GST) quando comparado com o controle no UV; (c) a MC-LR (alta concentração) co-exposta com fulereno foi capaz de diminuir as concentrações do antioxidante glutationa (GSH) quando comparado com o mesmo tratamento tanto no UVA quanto no escuro sem a co-exposição ao fulereno; (d) o tratamento MC-LR (baixa concentração) com UVA aumentou o dano oxidativo lipídico quando comparado com o controle UVA; (e) o fulereno não causou uma maior bioacumulação da microcistina no tecido. Sendo assim, pode-se concluir que o fulereno não apresentou o potencial de carregador de moléculas nessas concentrações de microcistina, porém, a co-exposição dos compostos diminuem tanto capacidade antioxidante total, como a concentração da GSH, podendo gerar problemas a longo prazo na detoxificação da toxina.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A avaliação do aporte de matéria orgânica no ambiente aquático por atividades antrópicas pode ser realizada através da identificação e quantificação de marcadores moleculares. Diversos estudos apontam à aplicação dos marcadores moleculares com esta finalidade, no entanto, poucos avaliam a variação das concentrações desses compostos ao longo do tempo, registrada nas camadas sedimentares. O presente trabalho realiza um estudo a partir de três classes de marcadores moleculares presentes em perfis sedimentares da região do Complexo Estuarino de Paranaguá (CEP) no Paraná (PR), que nos últimos anos vêm sofrendo com o crescente desenvolvimento de atividades antrópicas. Como objetivo, tem-se identificar as principais fontes de matéria orgânica e estudar o histórico destes aportes em colunas sedimentares do CEP, relacionando as taxas de sedimentação com a deposição de origem natural e antrópica. A legislação vigente para o monitoramento ambiental, no que diz respeito à contaminação por esgoto fecal, sugere a avaliação por indicadores microbiológicos, porém, indicadores químicos como os esteróides fecais são uma alternativa bastante promissora, pois estes são persistentes, sendo menos sensíveis a variações ambientais. Outros dois marcadores moleculares de aportes antrópicos ao ambiente que foram determinados neste estudo são os alquilbenzenos lineares (LABs), presente em detergentes, que indicam aportes antrópicos oriundos de esgoto doméstico e a determinação de cafeína, tendo em vista que os esteróides fecais podem ser originários de fezes de animais de sangue quente, podendo indicar outras fontes. Para o presente trabalho foram coletados 12 testemunhos de até 1 m de profundidade em maio de 2006, totalizando 12 pontos de coleta e um montante de 121 amostras. As análises foram realizadas por cromatografia em fase gasosa com detecção por espectrometria de massas (CG-EM). Os esteróides encontrados em maior concentração foram o β- sitosterol (71,4 µg g-1), estigmasterol (8,7 µg g-1), colestanol (3,6 µg g-1) e o estigmastanol (2,8 µg g-1), todos oriundos de fonte natural, indicando que a maior contribuição para o CEP é por aporte biogênico. O coprostanol, que é um esterol fecal, foi encontrado entre as concentrações de 0,001 e 4,10 µg g-1, outros dois esteróides de origem fecal também foram detectados, coprostanona e epicoprostanol, onde as maiores concentrações foram 3,6 e 0,2 µg g-1, respectivamente, sendo encontrados em regiões próximas a centros urbanos, indicando origem antrópica. As maiores concentrações para o ∑LABs também foram encontradas em regiões próximas às cidades de Antonina e Paranaguá, sendo a maior encontrada no testemunho #3 Gererês (208 ng g-1). Para o último marcador molecular analisado, a cafeína, foi encontrada a maior concentração de 18,41 ng g-1, sendo este ponto localizado longe dos centros urbanos, porém este contaminante é bastante solúvel em água podendo ser transportado na coluna d’água e percorrer grandes distâncias. Através dos compostos analisados, pode-se perceber que a intervenção antropogênica foi mais marcante nos testemunhos coletados no eixo leste-oeste do CEP, ficando registrado nas camadas sedimentares.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polycyclic aromatic hydrocarbons (PAHs) constitute a large family of organic pollutants emitted in the environment as complex mixtures, the compositions of which depend on origin. Among a wide range of physiological defects, PAHs are suspected to be involved in disruption of reproduction. In an aquatic environment, the trophic route is an important source of chronic exposure to PAHs. Here, we performed trophic exposure of zebrafish to three fractions of different origin, one pyrolytic and two petrogenic. Produced diets contained PAHs at environmental concentrations. Reproductive traits were analyzed at individual, tissue and molecular levels. Reproductive success and cumulative eggs number were disrupted after exposure to all three fractions, albeit to various extents depending on the fraction and concentrations. Histological analyses revealed ovary maturation defects after exposure to all three fractions as well as degeneration after exposure to a pyrolytic fraction. In testis, hypoplasia was observed after exposure to petrogenic fractions. Genes expression analysis in gonads has allowed us to establish common pathways such as endocrine disruption or differentiation/maturation defects. Taken altogether, these results indicate that PAHs can indeed disrupt fish reproduction and that different fractions trigger different pathways resulting in different effects.