761 resultados para Antiferromagnetic spins
Resumo:
Six new copper metal complexes with formulas Cu(H2O)(2,2'-bpy) (H2L)](2) center dot H4L center dot 4 H2O (1), {Cu(H2O)(2,2'-bpy)-(H3L)}(2)(H2L)]center dot 2H(2)O (2), Cu(H2O)(1,10-phen)(H2L)](2)center dot 6H(2)O (3), Cu(2,2'-bpy)(H2L)](n)center dot nH(2)O (4), Cu(1,10-phen)(H2L)](n)center dot 3nH(2)O (5), and {Cu(2,2'-bpy)(MoO3)}(2)(L)](n)center dot 2nH(2)O (6) have been synthesized starting from p-xylylenediphosphonic acid (H4L) and 2,2'-bipyridine (2,2'-bpy) or 1,10-phenanthroline (1,10-phen) as secondary linkers and characterized by single crystal X-ray diffraction analysis, IR spectroscopy, and thermogravimetric (TG) analysis. All the complexes were synthesized by hydrothermal methods. A dinuclear motif (Cu-dimer) bridged by phosphonic acid represents a new class of simple building unit (SBU) in the construction of coordination architectures in metal phosphonate chemistry. The initial pH of the reaction mixture induced by the secondary linker plays an important role in the formation of the molecular phosphonates 1, 2, and 3. Temperature dependent hydrothermal synthesis of the compounds 1, 2, and 3 reveals the mechanism of the self assembly of the compounds based on the solubility of the phosphonic acid H4L. Two-dimensional coordination polymers 4, 5, and 6, which are formed by increasing the pH of the reaction mixture, comprise Cu-dimers as nodes, organic (H2L) and inorganic (Mo4O12) ligands as linkers. The void space-areas, created by the (4,4) connected nets in compounds 4 and 5, are occupied by lattice water molecules. Thus compounds 4 and 5 have the potential to accommodate guest species/molecules. Variable temperature magnetic studies of the compounds 3, 4, 5, and 6 reveal the antiferromagnetic interactions between the two Cu(II) ions in the eight membered ring, observed in their crystal structures. A density functional theory (DFT) calculation correlates the conformation of the Cu-dimer ring with the magnitude of the exchange parameter based on the torsion angle of the conformation.
Resumo:
A mixed-metal metal-organic framework (MOF) compound NiMn2{C6H3(COO)(3)}(2)], I, is prepared hydrothermally by replacing one of the octahedral Mn2+ ions in Mn-3{C6H3(COO)(3)}(2)] by Ni2+ ions. Magnetic studies on I suggest antiferromagnetic interactions with weak canted antiferromagnetism below 8 K. On heating in flowing air I transforms to NiMn2O4 spinel at low temperature (T < 400 degrees C). The thermal decomposition of I at different temperatures results in NiMn2O4 with particle sizes in the nano regime. The nanoparticle nature of NiMn2O4 was confirmed using PXRD and TEM studies. Magnetic studies on the nanoparticles of NiMn2O4 indicate ferrimagnetism. The transition temperature of NiMn2O4 nanoparticles exhibits a direct correlation with the particle size. This study highlights the usefulness of MOF compound as a single-source precursor for the preparation of important ceramic oxides with better control on the stoichiometry and particle size.
Resumo:
Three new copper-azido complexes Cu-4(N-3)(8)(L-1)(2)](n) (1), Cu-4(N-3)(6)(L-2)(2)(H2O)(2)] (2), and Cu-4(N-3)(6)(L-3)(2)](n) (3) L-1 is the imine resulting from the condensation of pyridine-2-carboxaldehyde with N-methylethylenediamine, HL2 and HL3 are the condensation products of 2-hydroxy-3-methoxybenzaldehyde with N,N-diethylethylenediamine and N-ethylethylenediamine respectively] have been synthesized by using 0.5 molar equivalents of the Schiff base ligands with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. Single crystal X-ray structures show that the basic unit of these complexes contains very similar Cu-4(II) building blocks. While 1 and 3 have overall 1D structures, 2 forms discrete tetranuclear clusters due to blocking of two coordination sites on the tetranuclear cluster by water molecules. Magnetic susceptibility measurements over a wide range of temperatures exhibit the presence of both antiferromagnetic and ferromagnetic exchanges within the tetranuclear unit structures. Density functional theory calculations (using B3LYP functional and two different basis sets) have been performed on the complexes 1-3 to provide a qualitative theoretical interpretation of their overall magnetic behavior.
Resumo:
We study here different regions in phase diagrams of the spin-1/2, spin-1 and spin-3/2 one-dimensional antiferromagnetic Heisenberg systems with frustration (next-nearest-neighbor interaction J(2)) and dimerization (delta). In particular, we analyze the behaviors of the bipartite entanglement entropy and fidelity at the gapless to gapped phase transitions and across the lines separating different phases in the J(2)-delta plane. All the calculations in this work are based on numerical exact diagonalizations of finite systems.
Resumo:
Integrability of classical strings in the BTZ black hole enables the construction and study of classical string propagation in this background. We first apply the dressing method to obtain classical string solutions in the BTZ black hole. We dress time like geodesics in the BTZ black hole and obtain open string solutions which are pinned on the boundary at a single point and whose end points move on time like geodesics. These strings upon regularising their charge and spins have a dispersion relation similar to that of giant magnons. We then dress space like geodesics which start and end on the boundary of the BTZ black hole and obtain minimal surfaces which can penetrate the horizon of the black hole while being pinned at the boundary. Finally we embed the giant gluon solutions in the BTZ background in two different ways. They can be embedded as a spiral which contracts and expands touching the horizon or a spike which originates from the boundary and touches the horizon.
Resumo:
Multiferroic materials are characterized by simultaneous magnetic and ferroelectric ordering making them good candidates for magneto-electrical applications. We conducted thermal expansion and magnetostriction measurements in magnetic fields up to 14 T on perovskitic GdMnO3 by highresolution capacitive dilatometry in an effort to determine all longitudinal and transversal components of the magnetostriction tensor. Below the ordering temperature T (N) = 42 K, i.e., within the different complex (incommensurate or complex) antiferromagnetic phases, lattice distortions of up to 100 ppm have been found. Although no change of the lattice symmetry occurs, the measurements reveal strong magneto-structural phenomena, especially in the incommensurate sinusoidal antiferromagnetic phase. A strong anisotropy of the magnetoelastic properties was found, in good agreement with the type and propagation vector of the magnetic structure. We demonstrate that our capacitive dilatometry can detect lattice expansion effects and changes of the dielectric permittivity simultaneously because the sample is housed inside the capacitor. A separation of both effects is possible by shielding the sample. Dielectric transitions could be detected by this method and compared to the critical values of H and T in the magnetic phase diagram. Dielectric changes measured at 1 kHz excitation frequency are detected in GdMnO3 at about 180 K, and between 10 K and 25 K in the canted antiferromagnetic structure which is characterized by a complex magnetic order on both the Gd- and Mn-sites.
Resumo:
Two-dimensional triangular-lattice antiferromagnetic systems continue to be an interesting area in condensed matter physics and LiNiO2 is one such among them. Here we present a detailed experimental magnetic study of the quasi-stoichiometric LixNi2-xO2 system (0.67
Resumo:
Engineering at the molecular level is one of the most exciting new developments for the generation of functional materials. However, the concept of designing polynuclear extended structures from bottom up is still not mature. Although progress has been made with secondary building units (SBUs) in metal organic frameworks (MOFs), the control seems to be just an illusion when it comes to bridging ligands such as the azide ion. When we say that the azido ligand is versatile in its bridging capabilities, what we mean is that it would be difficult to predict or control its bridging properties. However, this kind of serendipity is not always bad news. For example, scientists have shown that the azido ligand can mediate magnetic exchanges between paramagnetic metals in a predictable fashion (usually depending upon the bonding geometries). Therefore, it is a well-respected ligand in polynuclear assemblies. Serendipitous assemblies offer new magnetic structures that we may not otherwise even think about synthesizing. The azido ligand forms a variety of complexes with copper(II) using different blocking amines or pyridine based ligands. Its structural nature changes upon changing the substitution on amine, as well as the amount of blocking ligand. In principle, if we take any of these complexes and provide more coordination sites to the bridging azido ligands by removing a fraction of the blocking ligands, we can get new complexes with intricate structural networks and therefore different magnetic properties with the same components as used for the parent complex. In this Account, we mainly discuss the development of a number of new topological and magnetic exchange systems synthesized using this concept. Not all of these new complexes can be grouped according to their basic building structures or even by the ratio of the metal to blocking ligand. Therefore, we divided the discussion by the nuclearity of the basic building structures. Some of the complexes with the same nuclearities have very similar or even almost identical basic structures. However, the way these building units are joined together (by the azido bridges) to form the overall extended structures differ almost in every case. The complexes having the Cu-6 core are particularly interesting from a structural point of view. Although they have almost identical basic structures, some of them are extended in three dimensions, but two of them are extended in two dimensions by two different bridging networks. In the complexes having linear Cu-4 basic units, we find that using similar ligands does not always give the same bridging networks even within the basic building structures. These complexes have also enriched the field of molecular magnetism. One of the complexes with a Cu-3 building unit has provided us with the opportunity to study the competing behavior of two different kinds of magnetic exchange mechanism (ferromagnetic and antiferromagnetic) acting simultaneously between two metal ions. Through density functional theory calculations, we showed how they work independently and their additive nature to produce the overall effect. The exciting methodology for the generation of copper(II) polyclusters presented in this Account will provide the opportunity to explore analogous serendipitous assembly of diverse structures with interesting magnetic behavior using other transition metal ions having more than one unpaired electrons.
Resumo:
Four new oxo-centered Mn-III-salicylaldoximate triangle-based extended complexes (Mn6O2)-O-III(salox)(6)(EtOH)(4)(phda)](n)(saloxH(2))(n)(2H(2)O)(n) (1), (Mn6O2)-O-III(salox)(6)(MeOH)(5)(5-I-isoph)](n)(3MeOH)(n) (2), (Mn6O2)-O-III(salox)(6)(MeOH)(4)(H2O) (5-N-3-isoph)](n)(4MeOH)(n) (3) and (Mn3NaO)-Na-III(salox)(3)(MeOH)(4)(5-NO2-isoph)](n)(MeOH)(n) (H2O)(n) (4) salox=salicylaldoximate, phda=1,3-phenylenediacetate, isoph=isophthalate] have been synthesized under similar reaction conditions. Single crystal X-ray structures show that in 1, only one type of Mn-6 cluster is arranged in 1D, whereas in 2 and 3 there are two types of clusters, differing in the way the triangle units are joined and assembled. In complex4, however, the basic building structure is heteronuclear and based on Mn-3 units extended in 2D. Susceptibility measurements (dc and ac) over a wide range of temperatures and fields show that the complexes1, 2, and 3 behave as single molecule magnets (SMMs) with S=4ground state, while 4 is dominantly antiferromagnetic with a ground spin state S=2. Density functional theory calculations have been performed on model complexes to provide a qualitative theoretical interpretation for their overall magnetic behavior.
Resumo:
The phase formation behaviour of the magnetoelectric multiferroic 0.8BiFeO(3)-0.2PbTiO(3) was studied as a function of heat treatment at different temperatures of a sol-gel derived powder. While under ordinary synthesis conditions this composition exhibits antiferromagnetic ordering and a rhombohedral structure; the sol-gel-enabled low-temperature synthesis could stabilize a tetragonal metastable phase along with the stable rhombohedral phase, mimicking a morphotropic phase boundary state. The phase coexistence state exhibits relatively enhanced ferromagnetic correlation. The same system with a relatively higher PbTiO3 concentration, 0.65BiFeO(3)-0.35PbTiO(3), on the other hand, exhibits a rhombohedral metastable phase. These results suggest that the occurrence of metastable phases is a very common feature in the BiFeO3-PbTiO3 magnetoelectric ferroelectric system and that it affects the ferroelectric and magnetic properties of system quite remarkably.
Resumo:
Two new anionic inorganic-organic hybrid compounds H3O]Mn-3(mu(3)-OH)(C14H8O6S)(3)(H2O)](DMF)(5), I, and H3O](2)Mn-7(mu(3)-OH)(4)(C14H8O6S)(6)(H2O)(4)](H2O)(2)(DMF)(8), II have been prepared by employing mild solvothennal methods. Both the compounds have three-dimensionally extended structures formed by Mn-6 and Mn-7 clusters, respectively. The connectivity between Mn-6 and Mn-7 clusters and 4,4'-sulfonyldibenzoic acid anions (SDBA(2-)) results in a six connected pcu network in I and an eight connected bcu network in II. The presence of hydronium ion (H-3(O+)) along with the solvent molecules in the channels of both the compounds suggested proton conduction in the solids. Proton conductivity studies gave values of similar to 3 x 10(-4) Omega(-1) cm(-1) 98% relative humidity in both the compounds. The high activation energies indicate a vehicle mechanism in the compounds I and II. Magnetic studies indicate antiferromagnetic behavior in both the compounds.
Resumo:
The magnetic structure and properties of sodium iron fluorophosphate Na2FePO4F (space group Pbcn), a cathode material for rechargeable batteries, were studied using magnetometry and neutron powder diffraction. The material, which can be described as a quasi-layered structure with zigzag Fe-octahedral chains, develops a long-range antiferromagnetic order below similar to 3.4 K. The magnetic structure is rationalized as a super-exchange-driven ferromagnetic ordering of chains running along the a-axis, coupled antiferromagnetically by super-super-exchange via phosphate groups along the c-axis, with ordering along the b-axis likely due to the contribution of dipole dipole interactions.
Resumo:
Ultra-fine crystallites of Mn1-xZnxFe2O4 series (0 <= x <= 1) were synthesized through wet chemical co- precipitation method followed by calcination at 200 degrees C for 4 hours. Formation of ferrites was confirmed by X-ray diffraction, TEM selected area diffraction (SAD) and Fourier Transform Infra-red Spectroscopy (FTIR). Nanocrystallites of different compositions in the series were coated with biocompatible chitosan in order to investigate their possible application as contrast agent for magnetic resonance imaging (MRI). Chitosan coating examined by FTIR, revealed a strong bonding of chitosan molecules to the surface of the ferrite nanocrystallites. Spin-spin, tau(2) relaxivities of nuclear spins of hydrogen protons of the solutions for different ferrites were measured from concentration dependence of relaxation time by nuclear magnetic resonance (NMR). All the compositions of Mn1-xZnxFe2O4 series possess higher values of tau(2) relaxivity thus making them suitable as contrast agents for tau(2) weighted imaging by MRI.
Resumo:
Detailed magnetization and magneto-transport measurements studies are carried out to unearth the anomalous magnetism of Pr in PrCoAsO compound. The studied PrCoAsO sample is single phase and crystallized in the tetragonal structure with space group P4/nmm in analogy of ZrCuSiAs type compounds. Detailed magnetization measurements showed that Co moments in PrCoAsO exhibit weakly itinerant ferromagnetic Co spins ordering at below 80 K with a small magnetic moments of similar to 0.12 mu B/f.u. High temperatures Curie-Weiss fit, resulted in effective paramagnetic moment mu(eff) (exp) of 5.91 mu(B)/f.u., which can be theoretically assigned to 3d Co (3.88 mu(B)) and 4f Pr (3.58 mu(B)). Further, a positive Curie-Weiss temperature (Theta) of 136 K is seen, indicating predominant ferromagnetic interactions in PrCoAsO. Detailed transport measurements showed that PrCoAsO exhibit metallic behavior and negative magneto-resistance below ferro-magnetically (FM) ordered state. Surprisingly, the situation of PrCoAsO is similar to non magnetic La containing LaCoAsO and strikingly different than that as reported for magnetic Nd, Sm and Gd i.e., (Nd/Sm/Gd)CoAsO. The magnetic behavior of PrCoAsO being closed to LaCoAsO and strikingly different to that of (Nd/Sm/Gd)CoAsO is unusual. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
We report results of the magnetization and ac susceptibility measurements down to very low fields on a single crystal of the perovskite manganite, La-0.82 Ca-0.18 MnO3. This composition falls in the intriguing ferromagnetic insulator region of the manganite phase diagram. In contrast to earlier beliefs, our investigations reveal that magnetically (and in every other sense), this is a single- phase system with a ferromagnetic ordering temperature of around 170 K. However, this ferromagnetic state is magnetically frustrated, and the system exhibits pronounced glassy dynamics below 90 K. Based on measured dynamical properties, we propose that this quasi-long-ranged ferromagnetic phase, and the associated superspin glass behavior, is the true magnetic state of the system, rather than being a macroscopic mixture of ferromagnetic and antiferromagnetic phases, as often suggested. Our results provide an understanding of the quantum phase transition from an antiferromagnetic insulator to a ferromagnetic metal via this ferromagnetic state as a function of x in La1-xCaxMnO3, in terms of the possible formation of magnetic polarons.