818 resultados para Anaerobic reserve recovery


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus is a macronutrient essential to life which comes from phosphate rock, a non-renewable resource. Sewage sludge from wastewater treatment plants (WWTP) is a secondary resource rich in phosphorus that can be valorized. However, organic compounds are detected in sewage sludge, due to its non-polar and hydrophobic character, being considered an environmental risk. The present dissertation aims to study the efficiency of the electrodialytic process (ED) when applied to sewage sludge aiming phosphorus recovery and organic contaminants removal. Four organic compounds were analyzed: 17α-ethynylestradiol (EE2), bisphenol A (BPA), caffeine (Caf) and oxybenzone (MBPh). The experiments took place in an ED cell with two compartments and an anion exchange membrane, with the sludge in the cathode compartment. The experiments were carried out for three days with spiked sewage sludge (six assays). One control experiment was done without current, three experiments were carried out applying a constant current of 50, 75, and 100 mA and two experiments were carried out applying sequential currents: 50 mA, 75 mA and 100 mA and the opposite (100-75-50 mA). A qualitative and quantitative analysis of microorganisms existing in the samples was also done. At the end, the pH increased in the sewage sludge favoring phosphorus recovery. In terms of phosphorus, the highest recovery was achieved in the experiment run with 100 mA, where 70.3±2.0% of total phosphorus was recovered in the electrolyte. Generally, compounds degradation was favored by the current. Caf and MBPh achieved degradation percentages of 96.2±0.2% and 84.8±1.3%, respectively, in 100 mA assay. EE2 (83.1±1.7%) and BPA (91.8±4.6%) degradations were favored by 50 mA current. A total of 35 taxa from four different groups were identified, totalizing between 81,600-273,000 individuals per gram of initial sludges. After ED, microbial community population decreased between 47-98%. Arcella gibbosa represented 61% of the total observed organisms and revealed to be more tolerant to medium changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, I apply a simple protocol to species occurrence inventory of Odonata in a region of Maranhão state which has very few distributional records. Some relations between species occurrence and environmental characteristics are discussed, mainly in relation to the high occurrence of Erythemis. Eighteen new records are presented discussing the role of this approach to generate useful information for conservation purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excessive accumulation of Long Chain Fatty Acids (LCFA) in methanogenic bioreactors is the cause of process failure associated to a severe decrease in methane production. In particular, fast and persistent accumulation of palmitate is critical and still not elucidated. Aerobes or facultative anaerobes were detected in those reactors, raising new questions on LCFA biodegradation. To get insight into the influence of oxygen, two bioreactors were operated under microaerophilic and anaerobic conditions, with oleate at 1 and 4 gCOD/(L d). Palmitate accumulated up to 2 and 16 gCOD/L in the anaerobic and microaerophilic reactor, respectively, which shows the importance of oxygen in this conversion. A second experiment was designed to understand the dynamics of oleate to palmitate conversion. A CSTR and a PFR were assembled in series and fed with oleate under microaerophilic conditions. HRT from 6 to 24 h were applied in the CSTR, and 14 to 52 min in the PFR. In the PFR a biofilm was formed where palmitate accounted for 82% of total LCFA. Pseudomonas was the predominant genus (42 %) in this biofilm, highlighting the role of aerobic and facultative anaerobic bacteria in LCFA bioconversion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White sand forests, although low in nutrients, are characterized not only by several endemic species of plants but also by several monodominant species. In general, plants in this forest have noticeably thin stems. The aim of this work was to elaborate a parallel dichotomous key for the identification of Angiosperm tree species occurring on white sand forests at the Allpahuayo Mishana National Reserve, Loreto, Peru. We compiled a list of species from several publications in order to have the most comprehensive list of species that occur on white sand forest. We found 219 species of Angiosperm, the more abundant species were Pachira brevipes (26.27%), Caraipa utilis (17.90%), Dicymbe uaiparuensis (13.27%), Dendropanax umbellatus (3.28%), Sloanea spathulata (2.52%), Ternstroemia klugiana (2.30%), Haploclathra cordata (2.28%), Parkia igneiflora (1.20%), Emmotum floribundum (1.06%), Ravenia biramosa (1.04%) among others. Most species of white sand forests can be distinguished using characteristics of stems, branches and leaves. This key is very useful for the development of floristic inventories and related projects on white sand forests from Allpahuayo Mishana National Reserve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Química e Biológica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Excerpt] The aim of this research was to evaluate the influence of temperature, time and mass/ volume ratio on the release of sugars and polyphenols using an autohydrolysis procedure from pineapple waste. A Box-Bhenken design was used with three factors (time, temperature and mass/volume ratio) and three levels was used. All treatments were performed in triplicate. Nine central points were used. For autohydrlosysis treatments, an oil bath was used [1]. After autohydrolysis, liquid phases or hydrolysates were analyzed for glucose and fructose concentration by high performance liquid chromatography (HPLC) [2]. The FolinCiocalteu assay was used to measure total polyphenols of hydrolysates [3] and HPLC to identify these molecules [4]. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Excerpt] Anaerobic bioremediation is an important alternative for the common aerobic cleanup of subsurface petroleum-contaminated soil and water. Microbial communities involved in anaerobic oil biodegradation are scarcely studied, and only few mechanisms of anaerobic hydrocarbons degradation are described. In this work, microbial degradation of aliphatic hydrocarbons (AHC) was studied by using culture-dependent and culture-independent approaches. Hexadecane and hexadecene-degrading microbial communities were enriched under sulfate-reducing and methanogenic conditions. The microorganisms present in the enriched cultures were identified by 16S rRNA gene sequencing. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fat, oils, and grease present in complex wastewater can be readily converted to methane, but the energy potential of these compounds is not always recyclable, due to incomplete degradation of long chain fatty acids (LCFA) released during lipids hydrolysis. Oleate (C18:1) is generally the dominant LCFA in lipid-containing wastewater, and its conversion in anaerobic bioreactors results in palmitate (C16:0) accumulation. The reason why oleate is continuously converted to palmitate without further degradation via β-oxidation is still unknown. In this work, the influence of methanogenic activity in the initial conversion steps of unsaturated LCFA was studied in 10 bioreactors continuously operated with saturated or unsaturated C16- and C18-LCFA, in the presence or absence of the methanogenic inhibitor bromoethanesulfonate (BrES). Saturated Cn-2-LCFA accumulated both in the presence and absence of BrES during the degradation of unsaturated Cn-LCFA, and represented more than 50\% of total LCFA. In the presence of BrES further conversion of saturated intermediates did not proceed, not even when prolonged batch incubation was applied. As the initial steps of unsaturated LCFA degradation proceed uncoupled from methanogenesis, accumulation of saturated LCFA can be expected. Analysis of the active microbial communities suggests a role for facultative anaerobic bacteria in the initial steps of unsaturated LCFA biodegradation. Understanding this role is now imperative to optimize methane production from LCFA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE - To identify, the anaerobic threshold and respiratory compensation point in patients with heart failure. METHODS - The study comprised 42 Men,divided according to the functional class (FC) as follows: group I (GI) - 15 patients in FC I; group II (GII) - 15 patients in FC II; and group III (GIII) - 12 patients in FC III. Patients underwent a treadmill cardiopulmonary exercise test, where the expired gases were analyzed. RESULTS - The values for the heart rate (in bpm) at the anaerobic threshold were the following: GI, 122±27; GII, 117±17; GIII, 114±22. At the respiratory compensation point, the heart rates (in bpm) were as follows: GI, 145±33; GII, 133±14; GIII 123±22. The values for the heart rates at the respiratory compensation point in GI and GIII showed statistical difference. The values of oxygen consumption (VO2) at the anaerobic threshold were the following (in ml/kg/min): GI, 13.6±3.25; GII, 10.77±1.89; GIII, 8.7±1.44 and, at the respiratory compensation point, they were as follows: GI, 19.1±2.2; GII, 14.22±2.63; GIII, 10.27±1.85. CONCLUSION - Patients with stable functional class I, II, and III heart failure reached the anaerobic threshold and the respiratory compensation point at different levels of oxygen consumption and heart rate. The role played by these thresholds in physical activity for this group of patients needs to be better clarified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of products from marine bioresources is gaining importance in the biotechnology sector. The global market for Marine Biotechnology products and processes was, in 2010, estimated at 2.8 billion with a cumulative annual growth rate of 510% (Børresen et al., Marine biotechnology: a new vision and strategy for Europe. Marine Board Position Paper 15. Beernem: Marine Board-ESF, 2010). Marine Biotechnology has the potential to make significant contributions towards the sustainable supply of food and energy, the solution of climate change and environmental degradation issues, and the human health. Besides the creation of jobs and wealth, it will contribute to the development of a greener economy. Thus, huge expectations anticipate the global development of marine biotechnology. The marine environment represents more than 70% of the Earths surface and includes the largest ranges of temperature, light and pressure encountered by life. These diverse marine environments still remain largely unexplored, in comparison with terrestrial habitats. Notwithstanding, efforts are being done by the scientific community to widespread the knowledge on oceans microbial life. For example, the J. Craig Venter Institute, in collaboration with the University of California, San Diego (UCSD), and Scripps Institution of Oceanography have built a state-of-the-art computational resource along with software tools to catalogue and interpret microbial life in the worlds oceans. The potential application of the marine biotechnology in the bioenergy sector is wide and, certainly, will evolve far beyond the current interest in marine algae. This chapter revises the current knowledge on marine anaerobic bacteria and archaea with a role in bio-hydrogen production, syngas fermentation and bio-electrochemical processes, three examples of bioenergy production routes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aromatic amines resulted from azo dyes biotransformation under anaerobic conditions are generally recalcitrant to further anaerobic degradation. The catalytic effect of carbon materials (CM) on the reduction of azo dyes is known and has been confirmed in this work by increasing 3-fold the biological reduction rate of Mordant Yellow 1 (MY1). The resulting m-nitroaniline (m-NoA) was further degraded to m-phenylenediamine (m-Phe) only in the presence of CM. The use of CM to degraded anaerobically aromatic amines resulted from azo dye reduction was never reported before. In the sequence, we studied the effect of different CM on the bioreduction of o-, m- and p-NoA. Three microporous activated carbons with different surface chemistry, original (AC0), chemical oxidized with HNO3 (ACHNO3) and thermal treated (ACH2), and three mesoporous carbons, xerogels (CXA and CXB) and nanotubes (CNT) were assessed. In the absence of CM, NoA were only partially reduced to the corresponding Phe, whereas in the presence of CM, more than 90% was converted to the corresponding Phe. ACH2 and AC0 were the best electron shuttles, increasing the rates up to 8-fold. In 24h, the biological treatment of NoA and MY1 with AC0, decreased up to 88% the toxicity towards a methanogenic consortium, as compared to the non-treated solutions. This article is protected by copyright. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To test the feasibility, safety and accuracy of the adenosine protocol in the study of myocardial perfusion with microbubbles contrast echocardiography. METHODS: 81 pts (64 male, 60+11 years) were submitted to contrast echocardiography with PESDA (sonicated solution of albumin 20%-1ml, dextrose 5%-12ml and deca-fluorobutane gas-8ml) to study the myocardial perfusion at rest and after bolus injection of adenosine (6 to 18mg) and to coronary angiography within 1 month each other. For each patient 3 left ventricle perfusion beds were considered (total of 243 territories). 208 territories were analyzed and 35 territories were excluded. PESDA was continuously infused (1-2ml/min), titrated for best myocardial contrast. Triggered (1:1) second harmonic imaging was used. RESULTS: Coronary angiography showed 70 flow limiting (> 75%) lesions and 138 no flow limiting lesions. At rest an obvious myocardium contrast enhancement was seen in at least 1 segment of a territory in all patients. After adenosine injection an unquestionable further increase in myocardial contrast was observed in 136 territories (99%) related to no flow limiting lesions, lasting < 10 s, and a myocardial perfusion defect was detected in 68 territories (97%) related to flow limiting lesions. It was observed only 4 false results. There were no serious complications. CONCLUSION: Myocardial perfusion study with PESDA and adenosine protocol is a practical, safe and accurate method to analyze the coronary flow reserve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE - To evaluate the Coronary Flow Reserve in the Coronary Sinus through transesophageal Doppler echocardiography in normal subjects. METHODS - We obtained technically adequate flow samples for analysis in 10 healthy volunteers (37±8 years, 5 men) with no history of heart or systemic disease and with mean left ventricular mass index by transthoracic echocardiography of 87±18 g/m². Coronary sinus flow velocity was recorded within the coronary sinus with the patient in a resting condition and during intravenous adenosine infusion at a dose of 140 µg/kg/min for 4 minutes. Recording of coronary sinus blood flow was possible in all cases with measurement of peak systolic, diastolic, and retrograde velocities (PSV, PDV, and PRV, cm/sec), mean systolic and diastolic velocities (MSV and MDV, cm/sec), and systolic and diastolic velocity time integral (VTI S and VTI D, cm/sec). RESULTS - The coronary flow reserve was calculated as the ratio between the blood flow in the basal state and the maximum measured hyperemic blood flow with adenosine infusion. Results are shown as mean and standard deviations. (CFR = PSV + PDV -- PRV/basal PSV): 1st min = 2.2±0.21; 2nd min = 3±0.3; 3rd min = 3.4±0.37; 4th min = 3.6 ± 0.33. CONCLUSION - Although coronary sinus flow had significantly increased in the first minute, higher velocities were seen at third and fourth minutes, indicating that these should be the best times to study coronary sinus flow with intravenous adenosine in continuous infusion.