998 resultados para Amsterdam-7
Resumo:
The structure of the abnormal product 1a formed in the Knoevenagel condensation of 2-carbethoxycyclohexanone and malononitrile has been further confirmed. Oxidation of the tetrahydroisoquinoline 3b using Na2Cr2O-AcOH-H2SO4 gave the keto isoquinoline 3d and the isoquinoline-1-carboxylic acid 5a. The acid chloride of 5a was condensed with diethyl ethoxymagnesiomalonate to afford after decarbethoxylation the methyl ketone 5d which on Baeyer-Villiger oxidation gave a mixture of the acetate 1g and the title compound 1b. The unambiguous synthesis of 1b confirms the structure assigned earlier to the title compound also formed during the partial hydrolysis of the diethoxy compound 1c. Condensation of 2-acetylcyclohexane-1,3-dione with malononitrile gave the quinoline derivative 4c which on ethylation yielded the ketoquinoline 4d. The present studies have confirmed that the quinoline compound 4a is also formed in the condensation of 2-acetylcyclohexanone and cyanoacetamide.
Resumo:
The reaction of the title complexes (FIG. 1) with N-bromosuccinimide or bromine in chloroform yields isomeric bromo complexes on substitution of the γ-CH carbon proton by bromine. The brominated products have been characterised by ir, pmr, electronic absorption spectra, conductivity and magnetic susceptibility measurements. The linkage isomerisation of the brominated products in chloroform has been shown to depend on the diamine residue.
Resumo:
For many, particularly in the Anglophone world and Western Europe, it may be obvious that Google has a monopoly over online search and advertising and that this is an undesirable state of affairs, due to Google's ability to mediate information flows online. The baffling question may be why governments and regulators are doing little to nothing about this situation, given the increasingly pivotal importance of the internet and free flowing communications in our lives. However, the law concerning monopolies, namely antitrust or competition law, works in what may be seen as a less intuitive way by the general public. Monopolies themselves are not illegal. Conduct that is unlawful, i.e. abuses of that market power, is defined by a complex set of rules and revolves principally around economic harm suffered due to anticompetitive behavior. However the effect of information monopolies over search, such as Google’s, is more than just economic, yet competition law does not address this. Furthermore, Google’s collection and analysis of user data and its portfolio of related services make it difficult for others to compete. Such a situation may also explain why Google’s established search rivals, Bing and Yahoo, have not managed to provide services that are as effective or popular as Google’s own (on this issue see also the texts by Dirk Lewandowski and Astrid Mager in this reader). Users, however, are not entirely powerless. Google's business model rests, at least partially, on them – especially the data collected about them. If they stop using Google, then Google is nothing.
Resumo:
7-Nitroanthranil (1, R = R = H) and 4-formylbenzofurazan oxide (2, R = R' = H) equilibrate on heating. The latter condenses with primary amines and the resulting imines rearrange to 7-nitroindazoles (8). The corresponding 6-methoxy and 6-chloro derivatives of 1 behave similarly. Neither 5- nor 6-nitroanthranil forms an indazole on heating with aniline or other primary amines.
Resumo:
In the molecular structure of the title compound, C21H25NO4, the dihydropyridine ring adopts a flattened boat conformation while the cyclohexenone ring is in an envelope conformation. In the crystal structure, molecules are linked into a two-dimensional network parallel to (10 (1) over bar) by N-H center dot center dot center dot O and O-H center dot center dot center dot O hydrogen bonds. The network is generated by R-4(4)(30) and R-4(4)(34) graph-set motifs.
Resumo:
All the non-H atoms of the title compound, C12H10ClNO, lie on a crystallographic mirror plane orientated perpendicular to the crystallographic b axis.
Resumo:
The quinoline fused-ring system of the title compound, C11H8ClNO, is planar (r.m.s. deviation = 0.007 angstrom); the formyl group is bent slightly out of the plane [C-C-C-O torsion angles = -9.6 (5) and 170.4 (3)degrees].
Resumo:
Welcome to Volume 7 of Student Success. This editorial has two parts: The first part maintains the “doing things differently” tradition, making readers aware by chronicling the publishing of the journal in an open access (OA) forum. Future editorials will briefly discuss other aspects and issues pertaining to the new scholarly publishing landscape that this journal adheres to, such as: Creative Commons Licencing; ORCID IDs; considerations of new peer review models and importantly; measuring research impact in OA publishing. The second part presents the usual editorial summary of the content of this issue.
Resumo:
Polygenic profiling has been proposed for elite endurance performance, using an additive model determining the proportion of optimal alleles in endurance athletes. To investigate this model’s utility for elite triathletes, we genotyped seven polymorphisms previously associated with an endurance polygenic profile (ACE Ins/Del, ACTN3 Arg577Ter, AMPD1 Gln12Ter, CKMM 1170bp/985+185bp, HFE His63Asp, GDF8 Lys153Arg and PPARGC1A Gly482Ser) in a cohort of 196 elite athletes who participated in the 2008 Kona Ironman championship triathlon. Mean performance time (PT) was not significantly different in individual marker analysis. Age, sex, and continent of origin had a significant influence on PT and were adjusted for. Only the AMPD1 endurance-optimal Gln allele was found to be significantly associated with an improvement in PT (model p=5.79 x 10-17, AMPD1 genotype p=0.01). Individual genotypes were combined into a total genotype score (TGS); TGS distribution ranged from 28.6 to 92.9, concordant with prior studies in endurance athletes (mean±SD: 60.75±12.95). TGS distribution was shifted toward higher TGS in the top 10% of athletes, though the mean TGS was not significantly different (p=0.164) and not significantly associated with PT even when adjusted for age, sex, and origin. Receiver operating characteristic curve analysis determined that TGS alone could not significantly predict athlete finishing time with discriminating sensitivity and specificity for three outcomes (less than median PT, less than mean PT, or in the top 10%), though models with the age, sex, continent of origin, and either TGS or AMPD1 genotype could. These results suggest three things: that more sophisticated genetic models may be necessary to accurately predict athlete finishing time in endurance events; that non-genetic factors such as training are hugely influential and should be included in genetic analyses to prevent confounding; and that large collaborations may be necessary to obtain sufficient sample sizes for powerful and complex analyses of endurance performance.
Resumo:
All non-H atoms of the title compound, C12H12ClNO, are co-planar (r.m.s. deviation = 0.055 angstrom). The hydroxy H atom is disordered over two positions of equal occupancy. In the crystal, molecules are linked by O-H center dot center dot center dot O hydrogen bonds, generating zigzag chains running along the b axis.
Resumo:
The title compound, C24H24N2O3S, exhibits antifungal and antibacterial properties. The compound crystallizes with two molecules in the asymmetric unit, with one molecule exhibiting 'orientational disorder' in the crystal structure with respect to the cyclohexene ring. The o-toluidine groups in both molecules are noncoplanar with the respective cyclohexene-fused thiophene ring. In both molecules, there is an intramolecular N-H...N hydrogen bond forming a pseudo-six-membered ring which locks the molecular conformation and eliminates conformational flexibility. The crystal structure is stabilized by O-H...O hydrogen bonds; both molecules in the asymmetric unit form independent chains, each such chain consisting of alternating 'ordered' and 'disordered' molecules in the crystal lattice.
Resumo:
In the title compound, C17H10Br2O5, the chromene ring is almost planar with minimal puckering [total puckering amplitude = 0.067 (4) angstrom]. The dihedral angle between chromeme ring system and phenyl ring is 3.7 (2)degrees. The crystal structure is stabilized by intermolecular C-H center dot center dot center dot O interactions and an intramolecular O-H center dot center dot center dot O hydrogen bond also occurs.
Resumo:
γ-Y 2Si 2O 7 is a promising candidate material both for hightemperature structural applications and as an environmental/thermal barrier coating material due to its unique properties such as high melting point, machinability, thermal stability, low linear thermal expansion coefficient (3.9×10 -6/K, 200°-1300°C), and low thermal conductivity (<3.0 W/ṁK above 300°C). The hot corrosion behavior of γ-Y 2Si 2O 7 in thin-film molten Na 2SO 4 at 850°-1000°C for 20 h in flowing air was investigated using a thermogravimetric analyzer (TGA) and a mass spectrometer (MS). γ-Y 2Si 2O 7 exhibited good resistance against Na 2SO 4 molten salt. The kinetic curves were well fitted by a paralinear equation: the linear part was caused by the evaporation of Na2SO4 and the parabolic part came from gas products evolved from the hotcorrosion reaction. A thin silica film formed under the corrosion scale was the key factor for retarding the hot corrosion. The apparent activation energy for the corrosion of γ-Y 2Si 2O 7 in Na 2SO 4 molten salt with flowing air was evaluated to be 255 kJ/mol.