985 resultados para Aluminum Compunds


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of hexagonal barium ferrite (BaFe12O19) was studied under hydrothermal conditions by a method in which a significant amount of ferrous chloride was introduced along side ferric chloride among the starting materials. Though all of the Fe2+ ions in the starting material were converted to Fe3+ ions in the final product, Fe2+ was confirmed to participate differently from the Fe3+ used in the conventional method in the mechanism of forming barium ferrite. Indeed the efficiency of the synthesis and the quality of the product and the lack of impurities such as Fe2O3 and BaFe2O4 were improved when Fe2+ was included. However, the amount of ferrous ions that could be included to obtain the desired product was limited with an optimum ratio of 2:8 for FeCl2/FeCl3 when only 2h of reaction time were needed. It was also found that the role of trivalent Fe3+ could be successfully replaced by Al3+. Up to 50% of their on could be replaced by Al3+ in the reactants to produce Al- doped products. It was also found that the ratio of Fe2+/M3+ could be increased in the presence of Al3+ to produce high quality barium ferrite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study sought to evaluate the influence of thermocycling and water storage on the microtensile bond strength of composite resin bonded to erbium:yttrium-aluminum-garnet (Er:YAG)-irradiated and bur-prepared enamel. Eighty bovine incisors were selected and sectioned. Specimens were ground to produce a flat enamel surface. Samples were randomly assigned according to cavity preparation device: (I) Er:YAG laser and (II) high-speed turbine, and were subsequently restored with composite resin. They were subdivided according to the duration of water storage (WS)/number of thermocycles (TCs): 24 h WS/no TCs; 7 days WS/500 TCs; 1 month WS/2,000 TCs; 6 months WS/12,000 TCs. The teeth were sectioned into 1.0 mm(2)-thick slabs and subjected to tensile stress in a universal testing machine. Data were submitted to two-way analysis of variance (ANOVA) and Tukey`s test at a 0.05 significance level. The different periods of water storage and thermocycling did not influence the microtensile bond strength (A mu TBS) values in the Er:YAG laser-prepared groups. In bur-prepared enamel, the group submitted to 12,000 TCs/6 months` WS (IID) showed a significant decrease in bond strength values when compared to the group stored in water for 24 h and not submitted to thermocycling (IIA), but values were statistically similar to those obtained in all Er:YAG laser groups and in the bur- prepared groups degraded with 500 TCs/1 week WS (IIB) or 2,000 TCs/1 month WS (IIC). It may be concluded that adhesion of an etch-and-rinse adhesive to Er:YAG laser-irradiated enamel was not affected by the methods used to simulate degradation of the adhesive interface and was similar to adhesion in the bur-prepared groups in all periods of water storage and thermocycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of aluminum on plasma ion, lipid, protein and steroid hormone concentration were evaluated in Oreochromis niloticus broodstock females. Lipid and protein concentrations from the gonads and liver were also measured Experiments were performed at neutral and acidic water pH Four groups of fish were tested for 96 h. 1) control conditions at neutral water pH, 2) control conditions at acidic water pH (CTR-Ac). 3) aluminum at neutral water pH (Al-N), and 4) aluminum at acidic water pH (Al-Ac) Aluminum and acidic water pH exposure caused no ionoregulatory disturbances Total lipid concentration increased in the mature gonads and decreased in the liver, suggesting an acceleration of lipid mobilization to the ovaries in animals exposed to aluminum However, a decreased protein concentration in ovaries was also observed Exposure of control fish to acidic water pH caused an increased concentration of plasma 17 alpha-hydroxyprogesterone However, females exposed to aluminum at acidic water pH showed a decreased of plasma 17 alpha-hydroxyprogesterone and cortisol. No differences in plasma 17 beta-estradiol were observed The physiological mechanisms underlying the disturbances observed are discussed focusing on reproduction We suggest that aluminum can be considered an endocrine disrupting compound in mature O. mloticus females (C) 2010 Elsevier Inc. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metastable phase diagram of the BCC-based ordering equilibria in the Fe-Al-Mo system has been calculated via a truncated cluster expansion, through the combination of Full-Potential-Linear augmented Plane Wave (FP-LAPW) electronic structure calculations and of Cluster Variation Method (CVM) thermodynamic calculations in the irregular tetrahedron approximation. Four isothermal sections at 1750 K, 2000 K, 2250 K and 2500 K are calculated and correlated with recently published experimental data on the system. The results confirm that the critical temperature for the order-disorder equilibrium between Fe(3)Al-D0(3) and FeAl-B2 is increased by Mo additions, while the critical temperature for the FeAl-B2/A2 equilibrium is kept approximately invariant with increasing Mo contents. The stabilization of the Al-rich A2 phase in equilibrium with overstoichiometric B2-(Fe,Mo)Al is also consistent with the attribution of the A2 structure to the tau(2) phase, stable at high temperatures in overstoichiometric B2-FeAl. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bonding properties of cations in phosphate glasses determine many short- and medium-range structural features in the glass network, hence influencing bulk properties. In this work, Pb-Al-metaphosphate glasses (1 - x)Pb-(PO(3))(2)center dot xAI(PO(3))(3) with 0 <= - x <= 1 were analyzed to determine the effect of the substitution of Pb by Al on the glass structure in the metaphosphate composition. The glass transition temperature and density were measured as a function of the Al concentration. The vibrational and structural properties were probed by Raman spectroscopy and nuclear magnetic resonance of (31)P, (27)Al, and (207)Pb. Aluminum incorporates homogeneously in the glass creating a stiffer and less packed network. The average coordination number for Al decreases from 5.9 to 5.0 as x increases from 0.1 to 1, indicating more covalent Al-O bonds. The coordination number of Pb in these glasses is greater than 8, showing an increasing ionic behavior for compositions richer in Al. A quantitative analysis of the phosphate speciation shows definite trends in the bonding of AlO(n) groups and phosphate tetrahedra. In glasses with x < 0.48, phosphate groups share preferentially only one nonbridging O corner with an AlO(n) coordination polyhedron. For x > 0.48 more than one nonbridging O can be linked to AlO(n) polyhedra. There is no corner sharing of O between AlO(n) and PbO(n) polyhedra nor between AlO(n) themselves throughout the compositional range. The PbO(n) coordination polyhedra show considerable nonbridging O sharing, with each O participating in the coordination sphere of at least two Pb. The bonding preferences determined for Al are consistent with the behavior observed in Na-Al and Ca-Al metaphosphates, indicating this may be a general behavior for ternary phosphate glasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this present work a method for the determination of Ca, Fe, Ga, Na, Si and Zn in alumina (Al(2)O(3)) by inductively coupled plasma optical emission spectrometry (ICP OES) with axial viewing is presented. Preliminary studies revealed intense aluminum spectral interference over the majority of elements and reaction between aluminum and quartz to form aluminosilicate, reducing drastically the lifetime of the torch. To overcome these problems alumina samples (250 mg) were dissolved with 5 mL HCl + 1.5 mLH(2)SO(4) + 1.5 mL H(2)O in a microwave oven. After complete dissolution the volume was completed to 20 mL and aluminum was precipitated as Al(OH)(3) with NH(3) (by bubbling NH(3) into the solution up to a pH similar to 8, for 10 min). The use of internal standards (Fe/Be, Ga/Dy, Zn/In and Na/Sc) was essential to obtain precise and accurate results. The reliability of the proposed method was checked by analysis of alumina certified reference material (Alumina Reduction Grade-699, NIST). The found concentrations (0.037%w(-1) CaO, 0.013% w w(-1) Fe(2)O(3), 0.012%w w(-1)Ga(2)O(3), 0.49% w w(-1) Na(2)O, 0.014% w w(-1) SiO(2) and 0.013% w w(-1) ZnO) presented no statistical differences compared to the certified values at a 95% confidence level. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this project forging of aluminum alloy Al 6026 T9 has been performed in the temperature range of 400 °C – 470 °C. The alloy which was in the shape of a cylindrical billet was formed in a press with the aim of analyzing the effect of different forging temperatures and required press load for optimal die filling. The component’s dimensions were later measured and compared to a reference piece. To ease the flow of material a lubricant was used between the billet and the die. This was demonstrated by compressing the billet with and without any lubricant.The performed experiments show that the lubricant reduces friction and makes it easier for the material to flow into the die. Higher billet temperature than 450 °C is deemed unnecessary as it does not give any significant improvement in filling the die. The experiments also conclude that a press load of at least 280 tons is required for these conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction of evaporative ponds and wetlands for the disposal of waste water high in ionic concentrations is a waste disposal strategy currently considered by many industries. However, the design, construction and management of these ponds and wetlands are not straightforward as complex chemical interactions result in both spatial and temporal changes in water quality. The effects of evaporation and drainage on the water quality in two constructed ponds, an adjacent man-made wetland and local groundwater at Portland Aluminium were investigated. The minimum volume of water entering the ponds during the study period was 0.96±0.16 ML per month. The predicted theoretical evaporative capacity of the two ponds was calculated to be 0.30±0.07 ML per month. More water enters the ponds than it is theoretically possible to evaporate under the ambient weather conditions at Portland, yet the ponds do not overflow, suggesting percolation through the pond lining. No spatial differences in solute concentrations (fluoride, sulphate, bicarbonate, carbonate, sodium, potassium, calcium, and magnesium ions) were found within the waters of either pond, although temporal differences were apparent. The results support the conclusion that the ponds are not impermeable, and that much of the waste water entering the ponds is being lost through seepage. The impacts on local groundwater chemistry of this seepage are addressed. Significant correlations exist between solute presence within and between the ponds, wetland and groundwater. Fluoride and sulphate concentrations were significantly higher in pond waters throughout the duration of the experiment. Pond sediments revealed a high degree of spatial and temporal heterogeneity in the concentration of all monitored ions resulting from the chemical heterogeneity of the material making up the pond linings. Adsorption isotherms for fluoride indicate that the adsorption capacity of the pond linings remains high for this ion. Implications for the management of waste water by this strategy are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cellular aluminum materials with relative densities of 0.1"-'0.25 were fabricated by the sintering method and effects of the density on mechanical properties of the cellular aluminum were investigated by compressive tests. The cellular aluminum exhibited a plateau region with a nearly constant flow stress. The stress in the plateau region increased with increasing relative density, on the other hand, the densification strain decreased with increasing relative density. Observation of the deformed cells revealed that the cell walls were bent. Besides, the stress in the plateau region was proportional to 1.9 power of the density. These suggest that plastic collapse is dominated by bending of the cell walls for the cellular aluminum produced by the sintering method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A camera based machine vision system for the automatic inspection of surface defects in aluminum die casting is presented. The system uses a hybrid image processing algorithm based on mathematic morphology to detect defects with different sizes and shapes. The defect inspection algorithm consists of two parts. One is a parameter learning algorithm, in which a genetic algorithm is used to extract optimal structuring element parameters, and segmentation and noise removal thresholds. The second part is a defect detection algorithm, in which the parameters obtained by a genetic algorithm are used for morphological operations. The machine vision system has been applied in an industrial setting to detect two types of casting defects: parts mix-up and any defects on the surface of castings. The system performs with a 99% or higher accuracy for both part mix-up and defect detection and is currently used in industry as part of normal production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructure and deformation behavior of the commercial aluminum-based Al7.5%Zn–2.7%Mg–2.3%Cu–0.15%Zr alloy subjected to high pressure torsion (HPT) were studied in the present work. A small grain size less than 100 nm, high level of internal stresses and presence of second phase nanoparticles were revealed by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The nanostructured alloy processed by HPT exhibits tensile strength of 800 MPa and ductility of 20% at optimal temperature-strain rate conditions. Unusual influence of a short pre-annealing on tensile strength and ductility of as-processed alloy is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The native oxide on the rolled aerospace aluminum alloy 7475-T7651 was characterized using a variety of different techniques, including X-ray Photoelectron Spectrometry (XPS), Auger Electron Spectrometry (AES), Transmission Electron Microscopy (TEM), Electron Energy Loss Spectrometry (EELS), Glow Discharge Optical Emission Spectrometry (GDOES), and Rutherford Backscattered Spectrometry (RBS). All techniques revealed that the native oxide layer is magnesium-rich and is probably a mixture of magnesium and aluminum–magnesium oxides.1 The oxide layer was found to be of nonuniform thickness due to the rolling process involved during the manufacture of this sheet alloy; this complicates analysis using techniques which have poor spatial resolution. Direct thickness measurement from cross-sectional TEM reveals an oxide thickness which varies between 125 and 500 nm. This large variation in thickness was also evident from GDOES and AES depth profiles as well asthe RBS data. Both XPS and RBS also show evidence for the presence of heavy metals in the oxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical properties of a closed-cell aluminium foam were investigated by compressive tests, and the deformation behaviours of the aluminium foams were studied using Xray microtomography. The results indicate that the deformation of the aluminium foams under compressive loading was localized in narrow continuous deformation bands having widths of order of a cell diameter. The cells in the deformation bands collapsed by a mixed deformation mechanism, which includes mainly bending and minor buckling and yielding. Different fractions of the three deformation modes led to variations in the peak stress and energy absorption for different foam samples with the same density. It was also found that the cell morphology affects the deformation mechanism significantly, whilst the cell size shows little influence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hollow sphere metallic foams are a new class of cellular material that possesses the attractive advantages of uniform cell size distribution and regular cell shape. These result in more predictable physical and mechanical properties than those of cellular materials with a random cell size distribution and irregular cell shapes. In the present study, single aluminum hollow spheres with three kinds of sphere wall thickness as 0.1 mm, 0.3 mm and 0.5 mm were processed by a new pressing method. Hollow sphere aluminum foam samples were prepared by bonding together single hollow spheres with simple cubic packing (SC) and body-centered cubic packing (BCC). Compressive tests were carried out to evaluate the deformation behaviors and mechanical properties of the hollow sphere aluminum foams. Effects of the sphere wall thickness and packing style on the mechanical properties were investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser shock peening (LSP) is an emerging surface treatment technology for metallic materials, which appears to produce more significant compressive residual stresses than those from the conventional shot peening (SP) for fatigue, corrosion and wear resistance, etc. The finite element method has been applied to simulate the laser shock peening treatment to provide the overall numerical assessment of the characteristic physical processes and transformations. However, the previous researchers mostly focused on metallic specimens with simple geometry, e.g. flat surface. The current work investigates geometrical effects of metallic specimens with curved surface on the residual stress fields produced by LSP process using three-dimensional finite element (3-D FEM) analysis and aluminium alloy rods with a middle scalloped section subject to two-sided laser shock peening. Specimens were numerically studied to determine dynamic and residual stress fields with varying laser parameters and geometrical parameters, e.g. laser power intensity and radius of the middle scalloped section. The results showed that the geometrical effects of the curved target surface greatly influenced residual stress fields.